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5. Pick’s Theorem about Lattice Polygons

This gem of mathematics deserves to be known by all mathematics
majors. It tells how to compute the area of a polygon just by counting
lattice points that it contains. We follow Nivan and Zuckerman, but
there are other slightly shorter proofs.

A simple polygon is one that is topologically equivalent to the circle. By
lattice points in the plane we mean those points with integral coordinates.

Theorem (Pick 1899)

The area of a simple polygon P, all of whose points are lattice points is
equal to the number of interior lattice points I (P), plus half the number
of lattice points on the boundary 1

2B(P), minus one

A(P) = I (P) + 1
2B(P)− 1.

So for example, the area of a triangle that contains no lattice points
other than its vertices is equal to 1

2 .



6. Example of Pick’s Theorem



7. Geometric Computation of Area



8. Pick’s Theorem Fails if P is Not Simple



9. Georg Pick

Figure: Georg Pick (1859–1942)

The Austrian Georg Pick completed his
thesis at the University of Vienna under
Königsberger and Weyr. Except for visiting
Felix Klein in Leipzig in 1884, he worked his
whole career at the Charles Ferdinand
University in Prague. He returned to
Vienna upon retirement in 1927. He died in
the Theresienstadt Concentration Camp in
1942.
Pick wrote papers in differential geometry
and complex analysis. He headed the
committee to appoint Albert Einstein to the
chair of mathematical physics in 1911. He
introduced Einstein to the recent work by
Ricci-Curbastro and Levi-Civita in curved
manifolds, without which Einstein couldn’t
have formulated his theory of General
Relativity of curved spacetimes.



10. Translation, Rotation and Negation Invariance

Figure: Translation T , Rotation R and
Negation N of Polygon X

Applying the translation

T (x , y) = (x + a, y + b)

to each vertex (x , y) of a polygon
translates the polygon by vector
(a, b) and keeps its area the same.
Similarly the transformations
rotation and negation preserve the
area

R(x , y) = (−y , x),

N(x , y) = (−x ,−y).

A point of (x , y) of the polygon X is
a lattice point if and only its
transformation is a lattice point of
the transformed polygon.



11. Little Triangles

Lemma

A lattice triangle ∆ has
area 1

2 if and only if it
contains no lattice points
other than its three
vertices.

Figure: Triangle ∆ and
Parallelogram P

Proof. By translating a vertex to the origin,
we may assume that the vertices of ∆ are
(0, 0), (a, b) and (c , d) such that the vectors
(a, b) and (c , d) are not collinear. Let P
denote the parallelogram with vertices (0, 0),
(a, b), (c, d) and (a + c , b + d). Note that
the triangle P\∆ has vertices (a + c , b + d),
(c , d) and (a, b) which is the translate of the
negative of ∆

P\∆ = T (N(∆))

where T (x , y) = (x + a + c , y + b + d). Thus
P\∆ has the same area as ∆ and contains no
lattice points other than its vertices.

It follows that ∆ has no lattice points other
than its three vertices if and only if P has no
lattice points other than its four vertices.



12. Lattice Triangles Proof

Figure: Plane tesselated by P

The entire plane can be
covered by non-overlapping
copies of P. Each copy is a
translate by the vector

(ma + nc ,mb + nd)

where m, n are integers. The edges form a
network N of lines, one set parallel to the
(0, 0) (a, b) edge of P and the other parallel
to the (0, 0) (c , d) side. Call the set of points
that are intersection points of these lines the
vertices of N . They are vertices of translates
of P so are lattice points. If some lattice
point is not a vertex of N , then it lies in one
of the replicas of P and is distinct from the
vertices of the replica of P. Translating, we
would then have a lattice point of P, not a
vertex of P.

It follows that ∆ has no lattice points other
than its three vertices if and only if all lattice
points are the vertices of N .



13. Lattice Triangles Proof -

Since the vertices of N are the points (ma + nc ,mb + nd) where m, n
are integers, if follows that ∆ has no lattice points other than its three
vertices if and only if for every pair of integers u, v there is a pair of
integers m, n such that ma + nc = u and mb + nd = v .
Solving,

m = du−cv
D , n = av−bu

D , D = ad − bc.

The fact that (a, b) and (c, d) are not collinear ensures D 6= 0. D = ±1
implies the existence of m, n. Suppose instead that m, n exist for all u, v .
taking first u = 1 and v = 0 and then u = 0 and v = 1 implies D divides
each of a, b, c and d . Hence D2 divides ad − bc = D. But this implies
D = ±1.

It follows that ∆ has no lattice points other than its three vertices if and
only if D = ±1.

Area is given by the determinant, A(∆) = 1
2 |D|, so that ∆ has no lattice

points other than its three vertices if and only if the area of ∆ is 1
2 .



14. Area of a Triangle

Theorem

Let T be the triangle with vertices
(0, 0), (a, c) and (b, d) then
A(T ) = 1

2 |ad − bc|.

Proof 1. In case 0 < b < c and
0 < c < d . Other cases similar.

A(T ) = ad − 1
2bd −

1
2ac

− 1
2(a− b)(d − c)

= ad − 1
2bd −

1
2ac

− 1
2(ad − ac − bd + bc)

= 1
2(ad − bc).

Proof 2. Using linear algebra, let P
be the parallelogram with vertices
(0, 0), (a, c), (b, d) and
(a + b, c + d). Thus P = L(S)
where the transformation

L
(x
y

)
=
(a b
c d

)(x
y

)
and S is the square with vertices
(0, 0), (1, 0), (0, 1) and (1, 1). Thus

2A(T ) = A(P) =
∣∣∣det

(a b
c d

)∣∣∣A(S).



15. The Space of Polygons

Figure: U, V and
U + V

Let S be the space of all simple polygons having all
vertices as lattice points. If U is in S, then it is a
polygon without holes and with a boundary that is
a simple closed polygonal curve.

If U,V ∈ S are polygons such that the sets have in
common a single connected part of the boundary
of each, not just a single point, and no other
points, then the union of the sets U and V , minus
the interior of their common boundary, forms a
polygon S . Denote this polygon U + V . Note that
U + V is not defined for all pairs of U and V of S,
just for certain pairs.

Suppose that f : S → R is a function such that
f (U) + f (V ) = f (U + V ) for all U,V ∈ S for
which U + V is defined, then we say that f (U) is
an additive function.



16. An Additive Function

Theorem

Let I (U) be the number of lattice points interior to U not on the
boundary and B(U) be the number of lattice points on the boundary of
U. Then the Pick Function

f (U) = αI (U) + βB(U) + γ
is additive if and only if β = α/2 and γ = −α.

Proof. First suppose f is additive. Let U be the square
(0, 0) (1, 0)(1, 1) (0, 1), V be the square (1, 0) (2, 0) (2, 1) (1, 1) and W
be the rectangle (0,−1) (2,−1) (2, 0) (0, 0). Then U + V and
(U + V ) + W are defined. Counting

I (U) = 0, B(U) = 4, f (U) = 4β + γ

I (V ) = 0, B(V ) = 4, f (V ) = 4β + γ

I (W ) = 0, B(W ) = 6, f (W ) = 6β + γ

I (U+V) = 0, B(U+V) = 6, f (U+V) = 6β + γ

I ((U+V)+W) = 1, B((U+V)+W) = 8, f ((U+V)+W) = α + 8β + γ



17. Rectangles Used in the Proof.



18. An Additive Function -

Additivity implies

f (U) + f (V ) = f (U + V )

f (U + V ) + f (W ) = f ((U + V ) + W )

Hence {
8β + 2γ = 6β + γ

12β + 2γ = α + 8β + γ
=⇒

{
2β + γ = 0

−α + 4β + γ = 0

so β = α/2 and γ = −α.

Second, assume that β = α/2 and γ = −α and U,V ∈ S such that
U + V is defined. Let C be the common part of the boundary, and k the
number of lattice points in C . Since C is more than a single point, it
contains at least two lattice points, the ends of C . Any lattice point of C
other than an endpoint is an interior point of U + V . Hence

I (U + V ) = I (U) + I (V ) + k − 2.



19. An Additive Function - -

Similarly, lattice points of C , except the endpoints are not boundary
points of U + V so

B(U + V ) = B(U)− k + B(V )− k + 2 = B(U) + B(V )− 2k + 2.

Hence

f (U + V ) = α(I (U) + I (V ) + k − 2) + β(B(U) + B(V )− 2k + 2) + γ

= (αI (U) + βB(U) + γ) + (αI (V ) + βB(V ) + γ)

+ (k − 1)(α− 2β)− α− γ
= f (U) + f (V )

since β = α/2 and γ = −α.



20. Big Triangles

Theorem

If ∆ is any lattice
triangle, then A(∆) =

I (∆) + 1
2B(∆)− 1.

Figure: ∆1 + ∆2 and
∆1 + ∆2 + ∆3

Proof. In case A(∆) = 1
2 , we have seen I (∆) = 0

and B(∆) = 3 so the theorem holds in this case.
The area of a general triangle is given by

A(∆) = 1
2 |(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)|

which is one half of an integer. We prove the
theorem by induction on A(∆) if we can show that
∆ = ∆1 + ∆2 or ∆ = ∆1 + ∆2 + ∆3 where ∆i are
triangles of S having smaller area than ∆.

If there is a lattice point other than a vertex on
one of the sides of ∆, then we break ∆ into two
triangles by means of the line from the point to the
opposite vertex. If ∆ has an interior lattice point,
we connect the point to the three vertices and
break ∆ into three triangles. The additivity of the
functions A and f completes the induction.



21. Convex Sets

Figure: Convex Set is Sum of Triangles

Theorem

If P is any lattice convex polygon,
then A(P) = I (P) + 1

2B(P)− 1.

Proof. A convex polygon may be
decomposed into triangles based at
one of its vertices. Then use the
additivity and area formula for
triangles from the previous
theorem.

In fact, a general simple lattice
polygon G can be decomposed into
triangles. Thus the same argument
shows the area formula for G .
Instead, we give a simpler argument
based on induction.



22. General Polygons

Theorem

If P is any simple lattice polygon, then A(P) = I (P) + 1
2B(P)− 1.

Proof. We argue by induction on the number of vertices n. If n = 3 then
P is a triangle then the formula holds for P. We may suppose n > 3 and
that the theorem holds for all polygons with n − 1 or fewer vertices.
Suppose that the vertices going around in order are A1,A2, . . . ,An so
that the sides are A1A2,A2A3, . . . ,An−1An,AnA1.

Let P0 be the smallest convex set that contains P
(the convex hull of P). Then P0 is a convex
polygon in S. The vertices of P0 are a subset of
A1,A2, . . . ,An. Some of the Ai may be interior
points of P0 and some may be boundary points but
not vertices of P0. If all the vertices of P are
vertices of P0 then P = P0 so P is convex and the
result holds from the previous theorem.



23. General Polygons -

Figure: n = 16, s = 3, r = 14.

If P is not convex, then some
vertex, call it A1 after a possible
cyclic relabelling, is an interior point
of P0. Let s ≥ 2 be the smallest
subscript such that As is on the
boundary of P0 and let r ≤ n be the
greatest subscript such that As is on
the boundary of P0.

Since P0 has at least three vertices,
at least three of the points
A1,A2, . . . ,An lie on the boundary
of P0, hence r − s ≥ 2.
Thus, there is a vertex of P strictly
between As and Ar .



24. General Polygons - -

Figure: P1 and P2, j = 3.

Let P1 be the polygon
connecting As ,As+1, . . . ,Ar ,As .
P1 has fewer vertices than P
since A1 is not a vertex of P1.

Let P2 be the polygon
connecting
Ar ,Ar+1, . . . ,An,A1, . . . ,As ,Ar .
P2 has fewer vertices than P
because there is a vertex of P
strictly between As and Ar .
Thus the induction hypothesis
applies to both P1 and P2.



25. General Polygons - - -

By area additivity, A(P1) = A(P) + A(P2). By the induction hypothesis,

A(P) = A(P1)− A(P2)

= I (P1) + 1
2B(P1)− 1− I (P2)− 1

2B(P2) + 1

= I (P1)− I (P2) + 1
2B(P1)− 1

2B(P2)

(1)

Let j be the number of lattice points on the segment J from Ar to As in
the boundary of P2. These points are on the boundary of both P1 and
P2. The remaining B(P2)− j boundary lattice points of P2 are interior
points of P1. All interior points of P2 and P are also interior points of
P1. Hence

I (P1) = I (P) + I (P2) + B(P2)− j . (2)



26. General Polygons - - - -

Of the boundary points of P1, all are boundary points of P except for the
j − 2 points of the segment ArAs different from the points Ar and As .
All the rest of the boundary points of P are precisely those boundary
points of P2 that don’t lie on the segment ArAs . These number
B(P2)− j . Hence

B(P) = B(P1)− j + 2 + B(P2)− j (3)

Inserting (2) and (3) into (1) we find

A(P) = I (P1)− I (P2) + 1
2B(P1)− 1

2B(P2)

=
(
I (P) + B(P2)− j

)
+ 1

2

(
B(P)− B(P2) + 2j − 2

)
− 1

2B(P2)

= I (P) + 1
2B(P)− 1.



27. Higher Dimensional Analogs

Reeve has given a formula for volume of three dimensional polyhedra
involving also the Euler-Poincaré characteristic from algebraic topology.

However, no formula involving only counts of lattice points on faces of P
can exist. In fact, no such formula exists for lattice tetrahedra (the
convex hull of four lattice pints in three dimensions).

Theorem

For three dimensional lattice tetrahedra P, there is no volume formula for
P of the form

αI (P) + βF (P) + γE (P) + δW (P) + η = V (P). (4)

where I (P) is the number of interior lattice points, F (P) is the number
of lattice points on the interior of the faces, E (P) the number of lattice
points on the edges excluding the vertices and W (P) the number of
vertices.



28. Higher Dimensional Analogs -

Proof. Consider the three tetrahedra with given vertices.

Vertices I F E W V
T1 (0,0,0), (1,0,0), (0,1,0), (0,0,1) 0 0 0 4 1/6
T2 (0,0,0), (1,0,0), (0,1,0), (0,0,2) 0 0 1 4 1/3
T3 (0,0,0), (2,0,0), (0,2,0), (0,0,2) 0 0 6 4 4/3

Substituting into (4), results in the system of equations

4δ + η = 1
6

γ + 4δ + η = 1
3

6γ + 4δ + η = 4
3

which are inconsistent, so there is no solution for α, β, γ, δ, η.



29. Tetrahedra Used in the Proof.



Thanks!




