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Abstract. Let G be a simply connected Chevalley group of type Dn, En or G2. In
this paper, we show that the minimal representation of G is unique for types Dn and
En and it does not exist for the type G2.

1. Introduction

Let F be a p-adic field with p odd. Let Φ be a simply laced root system (or of type
G2) and g the corresponding split semi-simple Lie algebra over the field F . Then there
is a decomposition

g = (⊕α∈Φgα)⊕ t

where gα are one-dimensional root spaces and t a maximal split Cartan subalgebra.
Let G be the corresponding simply connected Chevalley group. Let B = TU be a Borel
subgroup corresponding to a choice of positive roots Φ+. Here T is a maximal split torus
which is described as follows. For every root α there is a homomorphism ϕα : SL2 → G
(the image will be denoted by SL2(α)). Then T is generated by elements

α∨(t) = ϕα(diag(t, t−1)),

for t ∈ F×. The map α∨ : F× → T is the co-root corresponding to α. Let ∆ denote
the set of simple roots. Recall that parabolic subgroups containing B are in one-to-
one correspondence with subsets of ∆. For every subset Θ ⊆ ∆, there is a parabolic
subgroup PΘ = LΘUΘ such that LΘ is generated by T and SL2(α) for all α in Θ. In
particular, G = P∆ and B = P∅.

Any admissible representation V of G defines a character distribution χ in a neigh-
borhood of 0 in g. Moreover, by a theorem of Howe and Harish-Chandra [HC], there
exists a compact open subset ΩV of 0 such that for every function f which is compactly
supported in ΩV ,

(1) χ(f) =
∑
O∈N

cO

∫
f̂µO.

Here N is the set of nilpotent G-orbits in g, µO is a suitably normalized Haar measure on
O, and f̂ is the Fourier transform of f with respect to the Killing form and a non-trivial
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character ψ : F → C×. Let

NV = {O ∈ N | cO 6= 0}.

The wavefront set WF(V ) of V is defined as the subset of NV consisting of all maximal
elements in NV with respect to the partial order ≤ defined in the following way:

O1 ≤ O2

if and only if O1 ⊆ Ō2 where Ō denotes the topological closure of O. The minimal orbit
Omin is the smallest non-trivial nilpotent orbit in g. Its Bala-Carter [Ca] notation is A1.
If α is a long root and X a non-zero element in gα, then

Omin = AdG (X).

Definition. Suppose π is an irreducible admissible smooth representation of G such
that the wavefront set of π is the minimal orbit, then we call π a minimal representation
of G.

The main result of this paper is to determine minimal representations for groups of
type Dn and En. See Theorem 1.1. In particular, we need to fix some notation for these
two types roots systems. The set of simple roots is denoted by

∆ = {β1, β2, . . . , βn}.

We pick an indexing of simple roots so that β1, β2, β3 and β4 form the unique subdiagram
of type D4, and

• The root β2 corresponds to the branching point of the Dynkin diagram.
• The root β1 is connected to β2 only and to no other simple roots of G in the

Dynkin diagram.

The last two simple roots β3 and β4 are picked, in no particular order, to complete the D4

subdiagram. In terms of Bourbaki [Bo] notation, for type Dn groups, we have β1 = αn
and β2 = αn−2, and for type En groups, we have β1 = α2 and β2 = α4.

We define a character ν : F× → C× by ν(x) = |x|. Given a character χ of T and a
simple root βi, we define a character χi : F× → C× by

χi(t) = χ(β∨i (t)).

The main result of this paper is:

Theorem 1.1. Let V be a minimal representation of G. Then V is the unique irreducible
submodule of IndGBχ (normalized induction) where χ is a character such that χi = ν−1

for all i 6= 2 and χ2 is the trivial character.

Conversely, the unique irreducible submodule of IndGB(χ) (where χ is as in Theorem
1.1) is a minimal representation with

cOmin
= 1.
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This is Theorem 2.1 in [Sa]. Our next result deals with the exceptional group of type
G2. In a sense this is the most interesting case. Indeed, a simple argument shows that
a minimal representation of a split group of type Dn or En must be a representation
of a linear group. If the type is B3, Cn or F4 then a minimal representation must be
a representation of a two-fold cover of a linear group (oscillator representation for Cn).
A split group of type Bn for n > 3 has no minimal representation. However, if the
type is G2 then the situation is not so clear-cut. A minimal representation is either a
representation of a linear group or a representation of a three-fold cover of the linear
group. (See also a work of Torasso [To] for an explanation in terms of so-called admissible
data.) Thus, for some time, it has remained somewhat a mystery whether a Chevalley
group of type G2 has a minimal representation. In [Ga] Gan showed that there is no
minimal representation among spherical representations of G2. The following result now
completely answers this question:

Theorem 1.2. Let G be a Chevalley group of type G2. Then G has no minimal repre-
sentation.

As we have mentioned in the beginning of this introduction our results are subject to
the condition p 6= 2. This restriction comes from the work of Moeglin and Waldspurger
[MW]. Since [MW] makes use of the exponential map from g to G the restriction p 6= 2
appears to be unavoidable.

Methods of this paper are, of course, applicable to non-split groups. However, we have
restricted ourselves to split groups for the following reasons. First, a classification of all
non-split groups is quite complicated and, second, parameters of minimal representations
may differ considerably from group to group (see [GS] for exceptional groups).

Acknowledgment. The first author would like to thank the hospitality of the math-
ematics department at University of Utah while part of this paper was written. He is
partially supported by an NUS grant R-146-000-085-112. The second author is partially
supported by an NSF grant DMS-0551846.

2. Principal series representations

In this section we review some well known facts about principal series representa-
tions (see [Ro]) and prove that the induced representation IndGB(χ) where χ is as in the
statement of Theorem 1.1 has a unique irreducible submodule.

In this paper, Jacquet functors are normalized Jacquet functors as defined in Section
1.8(2)(b) in [BZ]. It is the left adjoint to the normalized induction functor.

Let E be an admissible representation of G. Now JU(E), the normalized module of
U -coinvariants (Jacquet module) with respect to the maximal unipotent subgroup U , is
finite dimensional. As a T -module, it can be decomposed as

JU(E) = ⊕χJU(E)∞χ
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where JU(E)∞χ consists of all v in JU(E) such that (π(t)− χ(t))nv = 0 for a sufficiently
large n. The characters χ are called exponents of E. The Frobenius reciprocity implies
that E is a submodule of an induced representation IndGB(χ) if and only if χ is an
exponent of E. Moreover, a character χ′ is an exponent of IndGB(χ) if and only if
χ′ = χw for some w is in the Weyl group W of Φ. The multiplicity of an exponent χ is

dim JU(IndGB(χ))∞χ = |Wχ|

where Wχ ⊆ W is the stabilizer of χ in the Weyl group W .

Proposition 2.1. Let E be a submodule of IndGB(χ) and βi a simple root. Let si be the
reflection defined by βi. Recall that χi = χ ◦ β∨i .

(1) If χ 6= χsi and χi 6= ν±1 then χsi is also an exponent of E.
(2) If χi = 1 then dim JU(E)∞χ ≥ 2.

Proof. We shall prove both statements at once. The proof is a simple combination of
representation theory for SL2 and induction in stages. To that end, let Pi = LiUi be the
parabolic subgroup such that [Li, Li] = SL2(βi). By representation theory of SL2, the
conditions on χ in each of the two statements imply that IndPi

B (χ) is irreducible. Since

IndGB(χ) = IndGPi
(IndPi

B (χ)),

the Frobenius reciprocity implies that IndPi
B (χ) is a quotient of JUi

(E). It follows that

JU(IndPi
B (χ)) is a quotient of JU(E). The proposition follows at once since the exponents

of IndPi
B (χ) are χ and χsi if χ 6= χsi and χ with multiplicity 2 if χ = χsi . �

Corollary 2.2. Let χ be a character of T such that χi = ν−1 for all i 6= 2 and χ2 = 1.
Then IndGB(χ) has a unique irreducible submodule.

Proof. Let V ′ ⊕ V ′′ be a submodule of IndGB(χ) such that V ′ 6= 0 and V ′′ 6= 0. Since
χ2 = 1, the proposition implies that dim JU(V ′)∞χ ≥ 2 and dim JU(V ′′)∞χ ≥ 2. By

exactness of the Jacquet functor, dim JU(IndGB(χ))∞χ ≥ 4. On the other hand, it can be
easily seen that Wχ, the stabilizer of χ in W , consist of only two elements: Wχ = {1, s2}.
It follows that dim JU(IndGB(χ))∞χ = 2. This is a contradiction. �

Our strategy of the proof of Theorem 1.1 is to show that any minimal representation
has an exponent χ such that χi = ν for all i 6= 2 and χ2 = 1.

3. Whittaker models

We state a result of [MW] which relates wavefront sets and generalized Whittaker
models of G. Let Y be an element in a nilpotent orbit O of g. Let H be a semisimple
element in g such that [H, Y ] = −2Y and all eigenvalues of H are integral. Existence
of one such H is guaranteed by the Jacobson-Morozov theorem, but there are many
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other choices, especially for Y in a small orbit. This observation is critical to us. Write
g = ⊕igi where gi is the i-eigenspace of H. Let

n′ = (Zg(Y ) ∩ g1) +
∑
i≥2

gi

and N ′ = exp(n′). Let 〈·, ·〉 denote the Killing form on g. The pair (Y,H) defines a
character ψ(Y,H) of N ′ by

ψ(Y,H)(expX) = ψ(〈X,Y 〉)

where X is in n′. If V is a representation of G, we set Jψ(Y,H)(V ) to be the twisted
Jacquet module with respect to the character ψ(Y,H). Let

Whψ(V ) = {O ∈ N | Jψ(Y,H)(V ) 6= 0 for some H}.

The following result is due to Moeglin and Waldspurger [MW].

Theorem 3.1. Assume that p 6= 2. The wavefront set of V coincides with the set of
maximal (with respect to the partial order ≤) nilpotent orbits in Whψ(V ).

Moeglin and Waldspurger also give a more precise description of Jψ(Y,H)(V ) for Y in
the wavefront set of V . There are two cases. The first case is when g1 = 0. Then

(2) dim Jψ(Y,H)(V ) = cO

where cO is given in (1). The second case, when g1 6= 0, is more complicated. Let
n = ⊕i>0gi and N = exp(n). Let n′′ be the kernel of the functional X 7→ 〈X,Y 〉 where
X is in n′. Let N ′′ = exp(n′′). Then N/N ′′ is a Heisenberg group with the center
N ′/N ′′. As such, it has a unique irreducible smooth representation WY with the central
character ψ(Y,H). Since N/N ′′ acts on Jψ(Y,H)(V ) with the central character ψ(Y,H),
as an N/N ′′-module, Jψ(Y,H)(V ) is a multiple of WY and have

(3) dim HomN(WY , Jψ(Y,H)(V )) = cO.

Finally we remark that for the given Y above, (2) or (3) will continue to hold for a
different choice of H such that [H, Y ] = −2Y .

We now describe some of our choices for H and Y . Let Yi be a non-zero element of
g−βi

. Let H∆ be in t such that [H∆, Yi] = −2Yi for all i. For any subset Θ of ∆, define

YΘ =
∑
βi∈Θ

Yi.

According to the recipe given above the pair (H∆, YΘ) defines a character ψ(YΘ, H∆) of
U . Moreover, let PΘ = LΘUΘ be the parabolic subgroup corresponding to Θ. We remind
the reader that LΘ is generated by T and SL2(α) for all simple roots α in Θ. Note that

• ψ(YΘ, H∆) is trivial on UΘ.
• ψ(YΘ, H∆) restricted to on U ∩ LΘ is a Whittaker functional for the group LΘ.
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For any representation V we have a natural isomorphism of vector spaces

(4) Jψ(YΘ,H∆)(V ) = Jψ(YΘ,H∆)(JUΘ
V )

where JUΘ
is the space of UΘ-coinvariants of V (Jacquet module). Thus, the above

formula shows that if Jψ(YΘ,H∆)(V ) 6= 0 then JUΘ
(V ) 6= 0 and it is generic.

The rest of this section is devoted to a proof of Theorem 1.1. The proof consists of a
series of lemmas. Let P1 = L1U1 be the parabolic subgroup corresponding to β1. Let Y1

be a non-zero element in g−β1 . Then the pair (Y1, H∆) defines the character ψ(Y1, H∆)
of U which is trivial on U1. If V is a minimal representation then Jψ(Y1,H∆)(V ) 6= 0 so the
formula (4) shows that JU1(V ) 6= 0 and it has generic (with respect to L1) subquotients.
The center of L1 clearly contains elements α∨(t) for any root α perpendicular to β1.
These include βi for all i 6= 1, 2 and the root β = β1 + 2β2 + β3 + β4. By Schur’s lemma
elements of the center of L1 have to act by a scalar on every irreducible subquotient of
JU1(V ). The first result of this section is the following:

Lemma 3.2. Let V be a minimal representation. Then β∨i (t) for i 6= 1, 2 acts trivially
on any irreducible generic (with respect to L1) subquotient of JU1(V ).

Proof. The scalar by which β∨i (t) acts on an irreducible generic subquotient can be
detected by a Whittaker functional (for L1). Since every irreducible generic subquotient
of JU1(V ) corresponds to a one-dimensional subquotient of Jψ(Y1,H∆), via a Whittaker
functional, it suffices to show that β∨i (t) acts trivially on Jψ(Y1,H∆)(V ). Let PΣ = LΣUΣ

be a parabolic subgroup corresponding to Σ = ∆ \ {β1, β2}. Let H be in t such that
[H, Yi] = 0 for all i 6= 1, 2 and [H, Yi] = −2Yi for i = 1, 2. The pair (Y1, H) defines a
character ψ(Y1, H) of UΣ. Since the restriction of ψ(Y1, H∆) to UΣ is equal to ψ(Y1, H),
we have a natural surjection

Jψ(Y1,H)(V ) → Jψ(Y1,H∆)(V ).

If i 6= 1, 2 then 〈βi, β1〉 = 0 and the group SL2(βi) centralizes Y1 and H. It follows that
the action of G on V descends to an action of SL2(βi) on Jψ(Y1,H). Since Jψ(Y1,H)(V ) is
finite dimensional (by minimality of V ) the action is trivial as SL2(F ) has no non-trivial
finite dimensional representations. This proves the lemma. �

Lemma 3.3. Let V be a minimal representation. Then β∨(t) acts by ν2 on any irre-
ducible generic subquotient of JU1(V ).

We shall assume this lemma for a moment. Its proof is given towards the end of
Section 4.

Lemma 3.4. Let τ be an irreducible subquotient of JU1(V ). Then τ is not supercuspidal.

Proof. Suppose τ is supercuspidal, in which case τ can be considered a quotient of
JU1(V ). In particular,

V ⊆ IndGP1
(τ).
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Let PΘ = LΘUΘ be the parabolic subgroup corresponding to Θ = {β1, β2}. Then we can
write

IndGP1
(τ) = IndGPΘ

(IndPΘ
P1

(τ)).

Next, by [BZ], IndPΘ
P1

(τ) is an irreducible generic representation of LΘ, a reductive group
of type A2. Recall that YΘ = Y1 + Y2 where Yi ∈ g−βi

and, by (4),

Jψ(YΘ,H∆)(V ) = Jψ(YΘ,H∆)(JUΘ
(V )) 6= 0

since the generic LΘ-module IndPΘ
P1

(τ) is a quotient of JUΘ
(V ). This is a contradiction

since YΘ belongs to an orbit with Bala-Carter notation A2. The lemma follows. �

In the following corollary we summarize what we have shown thus far:

Corollary 3.5. Let V be a minimal representation. Then the character χ such that
χi = ν−1 for all i 6= 1, 2 and χ1χ

2
2 = ν−1 is an exponent of V .

Proof. Indeed, we have shown that JU(V ) 6= 0 and there is a non-trivial T -invariant
subquotient of JU(V ) where β∨i (t) acts trivially for all i 6= 1, 2 and β∨(t) acts as ν2.
Since β = β1 +2β2 +β3 +β4, and β∨3 (t) and β∨4 (t) act trivially, it follows that β∨1 (t)β∨2 (t2)

acts as ν2 as well. Since the modular function satisfies δ
1/2
B (β∨i (t)) = ν(t) it follows that

χ is indeed an exponent of V . �

As the corollary shows, we have reduced the problem of finding an exponent of the
minimal representation V to figuring out what χ2 is. The following lemma reduces to
three possibilities.

Lemma 3.6. Assume that V is a minimal representation and χ an exponent such that
χi = ν−1 for all i 6= 1 and 2. Then χ2 is ν, 1 or ν−1.

Proof. Let Θ = {β3, β4} and PΘ = LΘUΘ the corresponding parabolic subgroup of G.
Let χ′ = χs2 . If χ2 6= ν±1 then χ′ is also an exponent of V by Proposition 2.1. If we
further assume that χ2 6= 1 then

χ′3 = χ3/χ2 6= ν−1 and χ′4 = χ4/χ2 6= ν−1.

Using the induction in stages

IndGB(χ′) = IndGPΘ
(IndPΘ

B (χ′))

so JUΘ
(V ) maps to IndPΘ

B (χ′) by Frobenius reciprocity. Since χ′i 6= ν−1 for i = 3, 4, any

submodule V ′ of IndPΘ
B (χ′) is LΘ-generic. In particular, we can pick YΘ = Y3 + Y4 with

Yi ∈ g−βi
for i = 3, 4 such that Jψ(YΘ,H∆)(V

′) 6= 0. Using (4), it follows that

Jψ(YΘ,H∆)(V ) = Jψ(YΘ,H∆)(JUΘ
(V )) 6= 0.

This contradicts the fact that V is minimal because Y belongs to an orbit with Bala-
Carter notation 2A1. It follows that χ2 must be ν−1, 1 or ν. �
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The three cases χ2 = 1, ν and ν−1 will be referred to as cases a), b) and c) and need
separate considerations.
Case a): χ2 = 1. Since χ1χ

2
2 = ν−1, it follows that χ1 = ν−1 and χ is the exponent we

have been looking for.
Case b): χ2 = ν. Since χ1χ

2
2 = ν−1, it follows that χ1 = ν−3. This exponent is

eliminated by the following lemma.

Lemma 3.7. A character χ of T such that χ1 = ν−3 and χ2 = ν cannot be an exponent
of a minimal representation.

Proof. Let Θ = {β1, β2} and PΘ = LΘUΘ be the corresponding parabolic subgroup of G.
Now, if V is a submodule of IndGB(χ) then, using the induction in stages and Frobenius
reciprocity, there is a non-trivial map (of LΘ-modules) from JUΘ

to IndPΘ
B (χ). We need

to understand this LΘ-module. To this end, realize the root subsystem spanned by roots
β1 and β2 in the space of triples (x, y, z) such that x + y + z = 0 and the simple roots
are β1 = (1,−1, 0) and β2 = (0, 1,−1). Let SL3 = [LΘ, LΘ]. Then the restriction of the
unramified character χ of T to T ∩ SL3 can be identified with a triple χ = (x, y, z) so
that

χ(βi(t)) = |t|〈χ,βi〉.

Under this identification the character χ such that χ1 = ν−3 and χ2 = ν is represented
by χ = (−5

3
, 4

3
, 1

3
). Notice that this character is regular for the A2-root system. This

implies that IndPΘ
B (χ) has a unique irreducible submodule. Furthermore, since χ2 = ν,

the induction in stages through the parabolic subgroup corresponding to β2 implies that
IndPΘ

B (χ) has a generic submodule Vg and a degenerate quotient Vd. Both are irreducible
by Rodier [Ro]. One could also deduce this from Theorems 2.2 and 3.5 in [Ze]. It follows
that the image of JUΘ

(V ) in IndPΘ
B (χ) must contain Vg. Using (4), it follows that

Jψ(YΘ,H∆)(V ) = Jψ(YΘ,H∆)(JUΘ
(V )) 6= 0.

This contradicts the fact that V is minimal because Y belongs to an orbit with Bala-
Carter notation A2. �

Case c): χ2 = ν−1. Since χ1χ
2
2 = ν−1, it follows that χ1 = ν. Theorem 1.1 follows from

the following lemma:

Lemma 3.8. Let V be a minimal representation. Assume that V has an exponent χ′

such that χ′i = ν−1 for all i 6= 1 and χ′1 = ν. Then the character χ such that χi = ν−1

for all i 6= 2 and χ2 = 1 is also an exponent of V .

Proof. Notice that χ′ = χs1 . By the assumption, V is a submodule of IndGB(χ′). Again,
we use the parabolic PΘ = LΘUΘ such that Θ = {β1, β2}. The induction in stages
and the Frobenius reciprocity imply that JUΘ

(V ) has a non-trivial quotient contained in

IndPΘ
B (χ′). It remains to understand this LΘ-module. The restriction of χ′ to T ∩ SL3

corresponds to χ′ = (1
3
,−2

3
, 1

3
). Since χ′2 = ν−1 induction in stages through the parabolic
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subgroup corresponding to β2 implies that IndPΘ
B (χ) has a degenerate submodule Vd and

a generic quotient Vg.
We claim that Vd and Vg are irreducible. To see this it suffices to show that they

are irreducible as SL3 = [LΘ, LΘ]-modules. To that end the restriction of χ′ and χ to
T ∩SL3 corresponds to χ′ = (1

3
,−2

3
, 1

3
) and χ = (−2

3
, 1

3
, 1

3
) respectively. By Example 11.2

in [Ze], IndPΘ
B (χ′) is a direct sum of two irreducible submodules. Hence Vd and Vg are

irreducible and proves our claim.
We will give an alternative proof of the claim in which we will also compute the

exponents. Since Vd is fully induced, it is a straightforward exercise to show that the
exponents of Vd are χ′ and χ = (χ′)s1 twice. Further decomposing of Vd would imply that
it contains, as a subquotient, a module with only one exponent. But there are only two
such representations for SL3: Steinberg and the trivial representation. Their exponents
are (−1, 0, 1) and (1, 0,−1), respectively. This is clearly a contradiction which shows
that Vd is irreducible. This argument shows that Vg is also irreducible.

In view of minimality of V , the non-trivial quotient of JUΘ
(V ) in IndPΘ

B (χ′) must be
equal to Vd. This shows that χ is an exponent of V . The lemma and main theorem are
proved at last. �

4. Heisenberg groups

This section is devoted to the proof of Lemma 3.3. In words, we want to calculate the
action of β(t) on Jψ(Y,H∆)(V ) where Y is a non-zero element in gβ1 and β = β1 + 2β2 +
β3 + β4. This will be accomplished by comparing Jψ(Y,H∆)(V ) with Jψ(Y,H)(V ) where H
belongs to a Jacobson-Morozov triple {X,H, Y } generating sl2(β1). Recall how ψ(Y,H)
is defined. First, the element H defines a gradation of g = ⊕igi. In order to describe gi,
let

Si = {α ∈ Φ|〈α, β1〉 = i}.
Then, for every i 6= 0, the space gi is a direct sum of gα for all α in Si. Since 〈α, β1〉 ≤ 2
and is equal to 2 only if α = β1, it follows that g2 is one dimensional, spanned by X, and
ψ(Y,H) is a character of the one-dimensional subgroup N ′ = exp(g2). There is more to
this story, however. Let n = g1 ⊕ g2. This is a two step (Heisenberg) nilpotent algebra
with the center g2. The normalizer of n in g is a parabolic subalgebra q = m⊕ n where

m = g0 = t⊕ (⊕α∈S0gα).

Let Q = MN denote the parabolic subgroup in G with the Lie algebra q. Of course,
N is a Heisenberg group with the center N ′. As such, N has a unique irreducible
representation (πY ,WY ) with central character ψ(Y,H). Next, note that Jψ(Y,H)(V ) is
the maximal quotient of V such that N ′ acts via ψ(Y,H) on it. In particular, as an
N -module, Jψ(Y,H)(V ) is a multiple of WY and we have an isomorphism of N -modules
(see [We])

(5) WY ⊗ HomN(WY , Jψ(Y,H)(V )) ∼= Jψ(Y,H)(V )
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defined by v⊗A 7→ A(v). In fact, this is also an isomorphism of [M,M ]-modules under
the following actions. First of all, by the usual construction of the Weil representation,
there is an action, also denoted by πY , of a double cover of [M,M ] on WY . In fact, as it
was shown in [KS], this action descends down to [M,M ]. Second, the action of [M,M ] on
V descends down to Jψ(Y,H)(V ) and is denoted by π. Putting things together, an element
m in [M,M ] acts on an element A in HomN(WY , Jψ(Y,H)(V )) by π−1(m) ◦ A ◦ πY (m).

If V is minimal then HomN(WY , Jψ(Y,H)(V )) has finite dimension cOmin
by (3) and the

action of the perfect group [M,M ] must be trivial. It follows that the action of [M,M ]
on Jψ(Y,H)(V ) can be reconstructed from the action πY of [M,M ] on WY . In order to
exploit this idea we need a polarization of N/N ′ to write down WY . Define

S+
1 = {α ∈ Φ+ : 〈α, β1〉 = 1} and S−1 = {α ∈ Φ− : 〈α, β1〉 = 1}.

Let n+ and n− be the direct sums of gα with α in S+
1 and S−1 , respectively. Then

g1 = n+ ⊕ n− such that [n+, n+] = 0 and [n−, n−] = 0. In particular, WY has a realiza-
tion as S(n−), the space of locally constant and compactly supported functions on n−.
Explicit formulas for the action πY of SL2(β) ⊂ [M,M ] on S(n−) were worked out in
[KS]. Roughly speaking, as it is shown in the proof of Proposition 2 in [KS], there is
a polarization n−β of g1 which is SL2(β)-invariant. Then the action SL2(β) on S(n−β ) is
by translations. This is correct, without any sign ambiguities, since SL2(β) is a perfect
group by Proposition 1 in [KS]. The action of β∨(t) on S(n−) is obtained from the action
of β∨(t) on S(n−β ) via a partial Fourier transform. We need the following very special

case: For every f in S(n−)

(πY (β∨(t))f)(0) = |t|−
〈β,λ〉

2 f(0)

where λ =
∑

α∈S−1
α. This formula gives the action of β∨(t) on the delta functional

δ(f) = f(0). On a case by case basis one easily verifies that 〈β, λ〉 = −4 in each case.
It follows that the action of β∨(t) on δ is given by

(6) δ(πY (β∨(t))f) = |t|2δ(f).

Proof of Lemma 3.3. Recall that ψ(Y,H∆) is a character of U and its restriction to
Z is equal to ψ(Y,H). It follows that Jψ(Y,H∆)(V ) is a quotient of Jψ(Y,H)(V ). Using the
isomorphism (5) and WY

∼= S(n−) we have a surjection

S(n−)⊗ HomN(S(n−), Jψ(Y,H)(V )) → Jψ(Y,H∆)(V ).

Recall that N+ = exp(n+) is contained in U and note that the character ψ(Y,H∆) is
trivial on N+. The maximal quotient of S(n−) such that N+ acts trivially on it is one-
dimensional and spanned by the delta function δ. Thus the above surjection descends
to a surjection

C · δ ⊗ HomN(S(n−), Jψ(Y,H)(V )) → Jψ(Y,H∆)(V ).

(This map is in fact an isomorphism since HomN(S(n−), Jψ(Y,H)(V )) and Jψ(Y,H∆)(V )
have the same dimension, equal to the coefficient cOmin

in the character expansion (1)
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of V - we do not need this, however.) The action of β∨(t) on δ is by |t|2 by (6) and is
trivial on HomN(S(n−), Jψ(Y,H)(V )). The proof of Lemma 3.3 is now complete.

5. G2

Let G be a Chevalley group of type G2 over the local field F . In this section we
show that G has no minimal representation. The proof is similar in nature to the
proof of uniqueness of the minimal representation for simply laced groups. We use a
variety of degenerate Whittaker models to narrow down parameters of a possible minimal
representation.

Let ∆ = {β1, β2} be a set of simple roots for G2 such that β1 is long and β2 is short.
Let P1 = L1U1 be the parabolic subgroup corresponding to β1. Let Y1 be a non-zero
element in g−β1 . The minimal orbit is generated by Y1. The pair (Y1, H∆) defines
the character ψ(Y1, H∆) of U which is trivial on U1. If V is a minimal representation
then Jψ(Y1,H∆)(V ) 6= 0 so the formula (4) shows that JU1(V ) 6= 0 and it has generic
subquotients.

Let β = β1 + 2β2. Note that β is perpendicular to β1. It follows that β∨(t) is in the
center of L1. In fact, if we identify L1

∼= GL2 as in [Mu], then β∨(t) is a scalar matrix:

β∨(t) = diag(t, t).

By Schur’s lemma elements of the center of L1 must act by a scalar on every irreducible
subquotient of JU1(V ).

Lemma 5.1. Let V be a minimal representation. Then, up to a complex number of
norm one, β∨(t) acts by ν2 on any irreducible generic subquotient of JU1(V ).

Proof. The proof of this is completely analogous to the proof of Lemma 3.3 and involves
a comparison of Jψ(Y1,H∆)(V ) and Jψ(Y1,H1)(V ) where Y1 and H1 belong to an sl2-triple
(X1, H1, Y1) spanning sl2(β1). In the simply laced case, however, working out the action
of β∨(t) on the Heisenberg representation WY is based on the fact that there is a polar-
ization invariant for SL2(β). There is no such polarization here, so this is why we have
a weaker result here. �

Lemma 5.2. Let τ be an irreducible subquotient of JU1(V ). Then τ is not supercuspidal.

Proof. Assume that τ is supercuspidal. Then τ can be considered a quotient of JU1(V ).
In particular,

V ⊆ IndGP1
(τ)

where induction is not normalized. Using the identification L1
∼= GL2, the previous

Lemma implies that τ = σ⊗ | det | where σ has a unitary central character. The square
root of the modular character of L1 acting on U1 is

δ
1/2
1 (g) = | det(g)|5/2.
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Let I1(s, σ) denote the (normalized) induced representation, where we induce the repre-
sentation σ ⊗ | det |s on L1. We have

V ⊆ I1(−3/2, σ).

Now, if V is minimal, then it is clearly a proper submodule of the induced principal
series. Thus the principal series I1(s, σ) reduces for s = −3/2. On the other hand,
Shahidi [Sh] has shown that if σ is a supercuspidal representation with unitary central
character then I1(s, σ) could reduce only for a half integral point between −1 and 1.
Since −3/2 is outside this range, we have a contradiction. The lemma is proved. �

The previous lemma shows that any minimal representation V is induced from a
Borel subgroup. In particular, JU2(V ) 6= 0, where P2 = L2U2 is the parabolic subgroup
corresponding to β2. We identify L2 with GL2 as in [Mu]. Let Y2 be a non-zero element
in g−β2 . The minimal orbit does not contain Y2. The pair (Y2, H∆) defines a character
ψ(Y2, H∆) of U which is trivial on U2. Note that the minimal orbit does not contain Y2.
Thus, if V is a minimal representation, Jψ(Y2,H∆)(V ) = 0. The formula (4) shows that
irreducible subquotients of JU2(V ) are one-dimensional characters of L2. It follows that

V ⊆ I2(s, χ ◦ det)

where I2 is a degenerate (normalized) principal series (denoted by Iα in [Mu].) and χ a
unitary character. The representation I2(s, χ ◦ det) is irreducible unless

χ = 1, s = ±3/2, or χ2 = 1, s = ±1/2 or χ3 = 1, s = ±1/2.

In order to describe irreducible subquotients of I2(s, χ◦det) we need some notation. Let
π(µ1, µ2) be the tempered principal series representation of GL2 where µ1 and µ2 are
two unitary characters. Let δ(χ) be the Steinberg representation of GL2 twisted by the
character χ ◦ det.

The following description of non-trivial subquoteints of I2(s, χ ◦ det) is taken from
Section 4 in [Mu]. (Note that I2(−s, χ ◦ det) has the same irreducible subquotients as
I2(s, χ

−1 ◦ det), so it suffices to consider s positive.)

Proposition 5.3. In R(G2), the Grothendieck group of admissible representations of
G2, we have:

(1) Let χ be of order 2. Then

I2(1/2, χ ◦ det) = J1(1, π(1, χ)) + J1(1/2, δ(χ)).

(2) Let χ be of order 3. Then

I2(1/2, χ ◦ det) = J1(1, π(χ, χ−1)) + J2(1/2, δ(χ
−1)).

(3) Let χ = 1. Then

I2(1/2, 1GL2) = π(1) + J1(1, π(1, 1)) + J1(1/2, δ(1)).
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(4) Let χ = 1. Then

I2(3/2, 1GL2) = 1G2 + J1(5/2, δ(1)).

where Ji(s, σ) is the unique (Langlands) quotient of the principal series representation
Ii(s, σ) and π(1) a discrete series representation which is a submodule of I1(1/2, δ(1)).

Now it is easy to see that none of the subquotients described above is a minimal
representation. As seen in the proof of Lemma 5.2 a minimal representation V can be a
submodule of I1(s, σ) where σ has a unitary central character only if s = −3/2. Thus,
if we look the case χ3 = 1, for example, then J1(1, π(χ, χ−1)) cannot be minimal since
J1(1, π(χ, χ−1)) is a submodule of I1(−1, π(χ−1, χ)). The same argument applies to all
Langlands quotients of type J1 appearing in the above Proposition and to π(1). Finally,
J2(1/2, δ(χ

−1)) cannot be minimal since it is a submodule of I2(−1/2, δ(χ)) and, by
Frobenius reciprocity, the space of U2-coinvariants of J2(1/2, δ(χ

−1)) is L2-generic. This
shows that G has no minimal representations.
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