
Arithmeticity and commensurability of sporadic groupsJulien PaupertDepartment of MathematicsUniversity of Utah155 South 1400 EastSalt Lake City, Utah 84112, USA.e-mail: paupert@math.utah.eduFebruary 20, 2009AbstractWe prove that the so-called sporadic complex re
ection triangle groups in SU(2; 1) are all non-arithmeticbut one, and that they are not commensurable to Mostow or Picard lattices (with a small list of exceptions).This provides an in�nite list of potential new non-arithmetic lattices in SU(2; 1).1 IntroductionIn [ParPau], Parker and the author considered symmetric triangle groups � in SU(2; 1) generated by threecomplex re
ections through angle 2�=p for p > 3 (the case of order 2 was studied by Parker in [Par1]). Bysymmetric we mean that the group in question is generated by three complex re
ections R1, R2 and R3 withthe property that there exists an isometry J of order 3 so that Rj+1 = JRjJ�1 (where j is taken mod 3). Infact we study the group � generated by R1 and J , which contains � with index 1 or 3.This type of group was �rst studied by Mostow in [M1] (for p = 3; 4; 5), where an additional condition wasimposed on the Rj (namely the braid relation RiRjRi = RjRiRj); these provided the �rst examples of non-arithmetic lattices in SU(2; 1). Following that Deligne{Mostow and Mostow constructed further non-arithmeticlattices in SU(n; 1) (n 6 9) as monodromy groups of certain hypergeometric functions, in [DM] and [M2] (thelattices from [DM] in dimension 2 were known to Picard who did not consider their arithmetic nature). Theselattices are (commensurable with) groups generated by complex re
ections Rj with other values of p; see [M2]and [S]. Subsequently no new non-arithmetic lattices have been constructed.In [ParPau] we showed that symmetric complex re
ection triangle groups � = hR1; R2; R3i, if they arediscrete with R1R2 and R1R2R3 elliptic, come in three 
avors: Mostow's lattices, subgroups of Mostow'slattices, and a third class which we called \sporadic groups"(see section 2 for a precise de�nition). Our mainmotivation is that these new groups are candidates for non-arithmetic lattices in SU(2; 1). In this paper weanalyze the adjoint trace �elds Q [TrAd�] of the sporadic groups �, and use this to determine which sporadicgroups are arithmetic, and which ones are commensurable to Mostow or Picard lattices. The main results areTheorems 4.1 and 5.2, which say in essence that all sporadic groups are non-arithmetic (except one which wasstudied in [ParPau]), and moreover that they are not commensurable to any of the Mostow or Picard lattices(with an explicit list of possible exceptions).The only required notions of complex hyperbolic geometry are the de�nitions of elliptic and regular ellipticisometries, as well as complex re
ections. These are standard and can be found for instance in the book [G].Acknowledgements: The author would like to thank John Parker and Domingo Toledo for stimulatingconversations concerning this work.
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2 Sporadic groupsIn this section we recall the setup and main results from [ParPau]. Our starting point was that groups � =hR1; Ji as de�ned above can be parametrised up to conjugacy by � = Tr(R1J); we denoted �( ; �) the groupgenerated by a complex re
ection R1 through angle  and a regular elliptic isometry J of order 3 such that� = Tr(R1J). The generators for this group were given in the following explicit form:J = 240 0 11 0 00 1 035 (2.1)R1 = 24e2i =3 � �ei =3 �0 e�i =3 00 0 e�i =3 35 (2.2)These preserve the Hermitian form hz;wi = w�H�z whereH� = 242 sin( =2) �ie�i =6� iei =6�iei =6� 2 sin( =2) �ie�i =6��ie�i =6� iei =6� 2 sin( =2)35 : (2.3)This always produces a subgroup � of GL(3;C), but the signature of H� depends on the values of  and� . We determined the corresponding parameter space for � for any �xed value of  (see sections 2.4 and 2.6 of[ParPau]). When � preserves a Hermitian form of signature (2; 1) we will say that � is hyperbolic.We found necessary conditions for these groups to be discrete, and these conditions produced, along withthe groups previously studied by Mostow in [M1], a list of possibly discrete such groups:Theorem 2.1 Let R1 be a complex re
ection of order p and J a regular elliptic isometry of order 3 in PU(2; 1).Suppose that R1J and R1R2 = R1JR1J�1 are elliptic. If the group � = hR1; Ji is discrete then one of thefollowing is true:� � is one of Mostow's lattices.� � is a subgroup of one of Mostow's lattices.� � is one of the sporadic groups listed below.Mostow's lattices correspond to � = ei� for some angle �; subgroups of Mostow's lattices to � = e2i� + e�i�for some angle �, and sporadic groups (this can be taken as a de�nition) are those for which � takes one of the18 values f�1; �1; :::; �9; �9g where the �i are given in the following list:�1 := ei�=3 + e�i�=6 2 cos(�=4) �2 := ei�=3 + e�i�=6 2 cos(�=5) �3 := ei�=3 + e�i�=6 2 cos(2�=5)�4 := e2�i=7 + e4�i=7 + e8�i=7 �5 := e2�i=9 + e�i�=9 2 cos(2�=5) �6 := e2�i=9 + e��i=9 2 cos(4�=5)�7 := e2�i=9 + e�i�=9 2 cos(2�=7) �8 := e2�i=9 + e�i�=9 2 cos(4�=7) �9 := e2�i=9 + e�i�=9 2 cos(6�=7):Therefore, for each value of p > 3, we have a �nite number of new groups to study, the �(2�=p; �i) and�(2�=p; �i) which are hyperbolic. We determined exactly which sporadic groups are hyperbolic (see table insection 3.3 of [ParPau]); notably these exist for all values of p, and more precisely:Proposition 2.1 For p > 4 and � = �1; �2; �3; �4; �5; �6; �7; �8 or �9, �(2�=p; �) is hyperbolic.When we study the question of arithmeticity of these groups, we will use the list of all hyperbolic sporadicgroups, as well as the following normalization of the entries of our matrices (proposition 2.8 of [ParPau]):Proposition 2.2 The maps R1, R2 and R3 may be conjugated within SU(2; 1) and scaled so that their matrixentries lie in the ring Z[�; � ; e�i ]. 2



Explicitly, we conjugate the previous matrices by C = diag(e�i =3; 1; ei =3) and rescale by e�i =3. Con-jugating by C and rescaling by 2 sin( =2) also brings H� to a Hermitian matrix with entries in the same ringR = Z[�; � ; e�i ]. Therefore, a hyperbolic �( ; �) can be realized as a subgroup of SU(H;R) where H is anR�de�ned Hermitian form of signature (2; 1).Finally, we showed that some of the hyperbolic sporadic groups are non-discrete (see Corollary 4.2, Propo-sition 4.5 and Corollary 6.4 of [ParPau]):Proposition 2.3 For p > 3 and (� or � = �3; �8 or �9), �(2�=p; �) is not discrete. Also, for p > 3; p 6= 5 and(� or � = �6), �(2�=p; �) is not discrete.3 Trace �eldsThe trace �eld Q [Tr�] is a classical invariant for a �nitely generated subgroup � of a linear group G. It isinvariant under conjugacy, but not commensurability. (We will say that two subgroups �1 and �2 of G arecommensurable if there exists g 2 G such that �1 \ g�2g�1 has �nite index in both �1 and g�2g�1). Toobtain a commensurability invariant for such �, one can consider one of the following �elds. Either the trace�eld Q
�Tr�(n)� (where �(n) is the subgroup of � generated by n-th powers, for � � GL(n;C)), as in [MR]for SL(2;C) or [Mc] for SU(2; 1). Another possibility is the adjoint trace �eld Q [TrAd�], given by the adjointrepresentation: Ad : G �! GL(g), as in [M1], [M2] or [DM] for SU(n; 1). The following result can be found forinstance in [DM] (Proposition 12.2.1):Proposition 3.1 Q [TrAd�] is a commensurability invariant.This is the �eld that we will use here, as it is more convenient for our purposes. Indeed, this invariant trace�eld has been computed for all known non-arithmetic lattices in SU(2; 1) (see lists on p. 251 of [M1] and p. 86of [DM]), and moreover it is easy to compute (or at least estimate) by the following result:Proposition 3.2 For 
 2 SU(2; 1), TrAd(
) = jTr(
)j2.This statement is used several times in [M1], where it is referred to as lemma 4.2, but unfortunately doesn'tappear in the �nal edition.Proof. If U is a unitary group (of any signature), the adjoint representation of U is isomorphic to therepresentation U 
 U . ˜We use this to �nd the following bounds for Q [TrAd�( ; �)]:Proposition 3.3 Q

�cos ; j� j2;Re�3;Re(e�i �3)� � Q [TrAd�( ; �)] � Q
��; � ; ei � \ R.Proof. The second inclusion follows from Propositions 2.2 and 3.2. For the �rst inclusion, we use Proposi-tion 3.2 and compute jTr(
)j2 for various words 
, using the table of traces from section 4.1 of [ParPau] (seealso formulae in [Pr]):� jTrR1j2 = 5 + 4 cos � jTrR1J j2 = j� j2 (by de�nition of �)� jTr(R1J)2j2 = j� j4 + 4j� j2 � 4Re�3� jTr(J�1R1)2j2 = j� j4 + 4j� j2 � 4Re(e�i �3) ˜We list the corresponding elements of Q [TrAd�(2�=p; �i)] in the following table. Numbers in the lastthree columns are not the values of j� j2, Re �3 or Re (e�i �3), but rather new algebraic numbers added to

Q [TrAd�(2�=p; �i)] by these values. For example, the �rst four zeroes in the fourth column indicate that thecorresponding Re �3 is already in Q
�cos ; j� j2�. 3



cos j� j2 Re �3 Re (e�i �3)�1 cos 2�=p 0 0 p2 sin 2�=p�2 cos 2�=p cos�=5 0 sin 2�=p�3 cos 2�=p cos 3�=5 0 sin 2�=p�4 cos 2�=p 0 0 p7 sin 2�=p�5 cos 2�=p 0 cos 2�=5 p3 sin 2�=p�6 cos 2�=p 0 cos 4�=5 p3 sin 2�=p�7 cos 2�=p cos�=7 0 p3 sin 2�=p4 ArithmeticityIn [ParPau] (Propositions 6.5 and 6.6) we proved that only one of the sporadic groups with p = 3, namely�(2�=3; �4), is contained in an arithmetic lattice in SU(2; 1). In this section we extend this to higher values ofp, and show that in fact this group is the only such example among all sporadic groups:Theorem 4.1 For p > 3 and � 2 f�1; �1; :::; �9; �9g, �(2�=p; �) is contained in an arithmetic lattice in SU(2; 1)if and only if p = 3 and � = �4.We will use the following criterion for arithmeticity:Proposition 4.1 Let E be a purely imaginary quadratic extension of a totally real �eld F , and H an E-de�nedHermitian form of signature (2,1) such that a sporadic group � is contained in SU(H ;OE). Then � is containedin an arithmetic lattice in SU(2; 1) if and only if for all ' 2 Gal(F ) not inducing the identity on Q [TrAd�], theform 'H is de�nite.This follows from lemma 4.1 of [M1]. Hypotheses (1) and (3) of that lemma (that Q [TrAd�] is a totallyreal �eld, and TrAd
 is an algebraic integer for all 
 2 � respectively) are veri�ed by Propositions 2.2 and 3.2,using the special values of � for sporadic groups.We will prove theorem 4.1 in several parts using this criterion. The �rst result follows the same lines as thecorresponding one in [ParPau]:Proposition 4.2 The sporadic group �(2�=p; �) is not contained in an arithmetic lattice in SU(2; 1), with thefollowing possible exceptions:� � = �1 and (p = 4 or p > 8)� � = �2 and (3 or 4 or 5 divides p)� � = �2 and (p = 8; 9; 10; 12; 14; 15; 16 or 18)� � = �4 and (p = 3 or p > 7)� � = �5 and 5 divides p� � = �7 and 7 divides p.Proof. We conjugate the generators and Hermitian form as in Proposition 2.2 so that their entries lie inthe ring Z[�; � ; e�i ], and are therefore algebraic integers in the �eld Q[�; � ; ei ]. (Recall that in our cases = 2�=p). We then �nd in each case a number �eld E as in Proposition 4.1, containing Q[�; � ; ei ], and aGalois conjugation of E which acts nontrivially on Q [TrAd�] and sends the Hermitian form to another inde�niteform. For the values of � and p which are not excluded above, we can use the same argument as in [ParPau],namely that one of the Galois conjugations of E sends the parameter � to another value for which we know thatthe Hermitian form is inde�nite (from our description of the parameter space). This requires using a Galoisconjugation �xing e2i�=p. The details are as follows: 4



� For � = �1 or �1, let E = Q[ei�=6; ei�=4; e2i�=p]. If p is not divisible by 3 or 4, the Galois conjugationsending ei�=6 to e�i�=6, ei�=4 to e�i�=4, and �xing e2i�=p sends �1 to �1. The corresponding Hermitianform is inde�nite for p = 3; 4; 5; 6; 7. This works for p = 5 or 7, but for p = 3, 4 or 6 we need to �ndanother Galois conjugation. For p = 3 or 6, sending ei�=6 to e7i�=6 (and for compatibility ei�=4 to e�i�=4)�xes e2i�=3 (respectively e2i�=6) and sends �1 to e4i�=3�1, which is equivalent to �1. These various Galoisconjugations act nontrivially on Re(e�i �3) = 5 cos + 5p2 sin , which is in Q [TrAd�].� For � 2 f�2; �2; �3; �3g, let E = Q[ei�=6; ei�=5; e2i�=p]. If p is not divisible by 3 or 4 or 5, the Galoisconjugation sending ei�=5 to e3i�=5, ei�=6 to e7i�=6 and �xing e2i�=p swaps �2 and �3, as well as �2 and�3. The Hermitian form corresponding to �2 and �3 is inde�nite for all p > 3; for �2 it is inde�nitefor 3 6 p 6 19, and for �3 it is inde�nite for 3 6 p 6 6. This Galois conjugation acts nontrivially onj� j2 = 2 + 2 cos(�=5) (respectively 2 + 2 cos(2�=5)), which is in Q [TrAd�].If p is not divisible by 2 or 3, the Galois conjugation sending ei�=6 to e�i�=6 and �xing the 2 othergenerators of E sends �2 to �2. This works unless p = 8; 9; 10; 12; 14; 15; 16; 18.� For � = �4 or �4, let E = Q[e2i�=7; e2i�=p], which contains ip7 = �4 � �4. If p is not divisible by 7,the Galois conjugation sending e2i�=7 to e�2i�=7 and �xing the other generator of E sends �4 to �4. Thecorresponding Hermitian form is inde�nite for p = 4; 5; 6. This Galois conjugation acts nontrivially on8Re(e�i �3) = 20 cos + 4p7 sin , which is in Q [TrAd�].� For � 2 f�5; �5; �6; �6g, let E = Q[ei�=9; e2i�=5; e2i�=p]. If p is not divisible by 5, the Galois conjugationsending e2i�=5 to e4i�=5 and �xing the 2 other generators of E sends �5 to �6, and �5 to �6. The Hermitianform corresponding to �5 and �6 is inde�nite for all p > 3; for �5 it is inde�nite for p = 2; 4, and for �6it is inde�nite for 4 6 p 6 29. This Galois conjugation acts nontrivially on Re�3 = 11=2 + 11 cos(2�=5)(respectively 11=2+ 11 cos(4�=5)), which is in Q [TrAd�].If p is not divisible by 3, the Galois conjugation sending ei�=9 to e�i�=9 and �xing the 2 other generatorsof E sends �6 to �6. This works for p = 5 (the only case where Proposition 2.3 doesn't tell us that�(2�=p; �6) and �(2�=p; �6) are nondiscrete).� For � 2 f�7; �7; �8; �8; �9; �9g, let E = Q[ei�=9; e2i�=7; e2i�=p]. If p is not divisible by 7, the Galoisconjugation sending e2i�=7 to e6i�=7 and �xing the 2 other generators of E sends �7 to �9 and �9 to �8,and �7 to �9 and �9 to �8. The Hermitian form corresponding to �7, �8 and �9 is inde�nite for all p > 4(even 3 for �7, �9 ); for �7 it is inde�nite for p = 2, for �8 it is inde�nite for 4 6 p 6 41, and for �9 it isinde�nite for 4 6 p 6 8. This Galois conjugation acts nontrivially on j� j4+ j� j2� 2Re�3 = 3+2 cos(2�=7)(respectively 3 + 2 cos(4�=7) and 3 + 2 cos(6�=7)), which is in Q [TrAd�].� Finally, we know from Proposition 2.3 that, for � 2 f�3; �3; �8; �8; �9; �9g, �(2�=p; �) is nondiscrete forall p, and in particular is not contained in an arithmetic lattice in SU(2; 1). ˜We then examine the remaining cases, where we must now take into account the e�ect of our variousGalois conjugations on  = e2i�=p. We will use the following notation. In all cases, the number �eld E is acyclotomic �eld Q
�e2i�=r�; the Galois group of E consists of the automorphisms 'n sending e2i�=r to e2in�=r,for (n; r) = 1. We will use the following criterion (Corollary 2.7 of [ParPau]), which expresses the determinant� of the Hermitian matrix H� in a convenient way:Lemma 4.1 When � = ei� + ei� + e�i��i� and sin( =2) > 0, the matrix H� has signature (2; 1) if and only if� = 8 sin(3�=2 +  =2) sin(3�=2 +  =2) sin��3(�+ �)=2 +  =2� < 0: (4.1)Proposition 4.3 �(2�=p; �) is not contained in an arithmetic lattice in SU(2; 1) for:� � = �1 and (p = 4 or p > 8)� � = �2 and 3 or 4 or 5 divides p� � = �4 and p > 7 5



� � = �5 and 5 divides p� � = �7 and 7 divides p.Proof. The argument is the following. In each case we �nd a Galois conjugation ' (acting nontrivially on
Q [TrAd�]) such that two of '(e3i�=2), '(e3i�=2), and '(e�3i(�+�)=2) lie in the open upper half of the unit circle,and the third in the open lower half (or, in the case of � = �4, all three in the lower half). Then this propertyis stable, i.e. if '( ) is small enough, adding '( )=2 to each of the three angles will not change it (where wethink of ' as acting on angles). We now give more details:� As previously, for � = �1 let E = Q[ei�=6; ei�=5; e2i�=p]; we will use ' 2 Gal(E) �xing �1 up to a cuberoot of unity. With the notation of Lemma 4.1, the corresponding triple (3�=2; 3�=2;�3(� + �)=2) is(�=2; �=8;�5�=8). We can achieve 'n(�1) = �1 (up to a cube root of unity) by sending ei�=4 to e�i�=4and �xing ei�=6 (up to a cube root of unity), or by sending ei�=4 to e�3i�=4 and ei�=6 to e7i�=6 = �ei�=6(up to a cube root of unity). This means that n is congruent to (1 or -1 mod 8) and (1 or 5 or 9 mod12) in the �rst case, and to (3 or -3 mod 8) and (3 or 7 or 11 mod 12) in the second. We win if wecan �nd such an n, coprime with p and such that n�=p < �=2, i.e. n 6 2p + 1 (this is the largest angleby which one can rotate the 3 points on the unit circle without any of them changing sides). The �rstfew solutions to the above congruences are n = (1); 3; 9; 11; 17; 19; 25; 27; 33; 35; 41. Start with n = 3; thisworks as long as 3 doesn't divide p and p > 7. We check that for p = 4, '5(�) < 0 (and '5(p2) 6= p2).Assume then that 3 divides p, and use n = 11; this works as long as 11 doesn't divide p and p > 23. Thisleaves p = 9; 12; 15; 18; 21; we check that n = 5 works for p = 9; 18; 21, n = 7 works for p = 12, and n = 11for p = 15. Assume then that 33 divides p, and use n = 17; this works as long as 17 doesn't divide pand p > 34. This leaves p = 33, where we check that '5(�) < 0. We then go on in this fashion (skippingsolutions like 27 and 33 which are divisible by 3), assuming that 3� 11� 17 divides p and using n = 19and so on. In this fashion p increases multiplicatively, whereas solutions to the above congruences increaseadditively, therefore such n exist by a wider and wider margin. We conclude inductively that such an nexists for p large enough (and we have checked the few exceptions for small p).� As previously, for � = �2 or �3 let E = Q[ei�=6; ei�=5; e2i�=p] and consider ' 2 Gal(E) sending ei�=5 toe3i�=5 and ei�=6 to e7i�=6 = �ei�=6. Then ' swaps �2 and �3. With the notation of Lemma 4.1, the corre-sponding triples (3�=2; 3�=2;�3(�+�)=2) are (�=2; �=20;�11�=20)when � = �2, and (�=2; 7�=20;�17�=20)when � = �3. Now when 3 or 4 or 5 divide p, ' also acts on e2i�=p.If 4 divides p, writing p = 4k, (e2i�=p)k = i = (ei�=6)3 is sent to �i, so '(e2i�=p) must be a k-th root of �i,in other words !k:e�i�=2k for a k-th root of unity !k. In fact, if 3 or 5 don't divide p one can send e2i�=pto any !k:e�i�=2k, say with !k = e2i�=k (this gives a better bound on p than 1). Then  =2 is sent to 3 =2(because ��=2k+ 2�=k = 3�=2k), and the argument works for 3�=p < 11�=20 (p > 6) when � = �3, and3�=p < 17�=20 (p > 4) when � = �2. There remain the cases where 5 divides p, as well as � = �3 andp = 4. In the latter case one can check that '13(�) < 0, with '13(cos 3�=5) 6= cos 3�=5.Now suppose that 5 divides p but 3 or 4 do not, and write p = 5k. As above, one can send e2i�=p to e6i�=p,and the same argument tells us that '(�) < 0 for p > 4 when � = �2 and p > 6 when � = �3. When p = 5and � = �3, one can again check that '13(�) < 0 (with '13(cos 3�=5) 6= cos 3�=5).If 3 divides p, we �nd ' 2 Gal(E) as above, namely we require that '(ei�=5) = e3i�=5 or e�3i�=5 and'(ei�=6) = e7i�=6 up to a cube root of unity, so that ' swaps �2 and �3 (up to a cube root of unity). Sucha ' is realized as a 'n if (and only if) n is congruent to (3 or -3 mod 10) and (3 or 7 or 11 mod 12).The values of such n are 3, 7, 23, 27, 43, 47... Moreover, with the angle triples as above, 'n(�) < 0 forn�=p < 17�=20 (when � = �2) or n�=p < �=2 (when � = �3). We may use n = 7 as long as 7 doesn'tdivide p, which works for p > 9 when � = �2, and p > 15 when � = �3. We then check the cases p = 6 and� = �2, as well as p = 6; 9; 12 and � = �3. It turns out that n = 7 works for all of these (renormalizing,when p = 6, 7 � 2�=6 as 2�=6). Now if 7 also divides p, we use the next solution n = 23, which worksfor p > 47 when � = �2, and p > 28 when � = �3, as long as 23 doesn't divide p. We check that n = 11works for p = 21 (� = �2; �3) and p = 42 (� = �2). One can then assume that 21� 23 divides p, and soon. We conclude inductively as above. 6



� For � = �4, E is as previously Q[e2i�=7; e2i�=p], and (3�=2; 3�=2;�3(�+ �)=2) = (�3�=7;�6�=7; 9�=7).If 7 doesn't divide p, consider ' 2 Gal(E) �xing e2i�=7 and sending e2i�=p to e2in�=p with (n; p) = 1 and1 < n 6 3p=7 (this is possible as p > 7). Then n�=p 6 3�=7 as required.If 7 divides p, say p = 7k, one can again �x e2i�=7 and send e2i�=p to a k-th root of itself; when k > 3,letting '(e2i�=p) = e2i�(1=k+1=p) works (i.e. '(�) < 0), because �=k+ �=p < 3�=7. Remain only the casesp = 7, where one can check that '2(�) < 0 (with '2(cos 2�=7) 6= cos 2�=7), and p = 14 where one cancheck that '9(�) < 0 (with '9(cos�=7) 6= cos�=7).� As previously, for � = �5 or �6 let E = Q[ei�=9; e2i�=5; e2i�=p] and consider ' 2 Gal(E) sending e2i�=5 toe4i�=5 and �xing ei�=9. Then ' swaps �5 and �6. With the notation of Lemma 4.1, the correspondingtriples (3�=2; 3�=2;�3(�+�)=2) are (�=3; 13�=30;�23�=30) when '(�) = �5, and (�=3; 31�=30;�41�=30)when '(�) = �6.If 5 divides p, say p = 5k, ' must send e2i�=p to a k-th root of e4i�=5, and one can choose any of theseif 3 does not divide p, such as e4i�=5k. When � = �5 this works for 2�=p 6 17�=30 (p > 4), and when� = �6 for 2�=p 6 11�=30 (p > 6). When p = 5 and � = �6, one can check that '4(�) < 0 (with'4(p3 sin(2�=5)) 6= p3 sin(2�=5)).Now if 3 also divides p, we must look more closely at how ' is de�ned above. Namely such a ' is a 'nif and only if n is congruent to 2 mod 5 and 1 mod 18. The smallest such n is 37. However one canrelax slightly the de�nition of ' to allow '(ei�=9) = !3ei�=9 for any cubic root of unity !3 (this does nota�ect �). The conditions are then that n should be congruent to (2 mod 5) and (1 or 7 or 13 mod 18).We can then use n = 7, unless 7 divides p. In that case '7 would work for 7�=p 6 17�=30 (p > 13)when � = �6, and for 7�=p 6 11�=30 (p > 20) when � = �5. Since at this point 15 divides p, thereremains only the case where p = 15 and � = �6, in which case one can check that '11(�) < 0 (with'11(cos(2�=15)) 6= cos(2�=15).Finally, if 7 also divides p (at this point p is divisible by 105), we can do the same thing. That is, weclaim that there exists n congruent to (2 mod 5) and (1 or 7 or 13 mod 18), coprime with p and such thatn�=p 6 11�=30 (i.e. n 6 11p=30). For p = 105k, n = 37 satis�es these conditions for 1 6 k 6 36. Afterthat, suppose that 37 divides p and so on; we conclude inductively as above.� As previously, for � = �7 let E = Q[ei�=9; e2i�=7; e2i�=p] and consider 'n 2 Gal(E) sending e2i�=7 to e6i�=7(resp. e�2i�=7) and �xing ei�=9 (up to a cube root of unity) This means that n should be congruent to(3 resp. -1 mod 7) and (1 or 7 or 13 mod 18). Then 'n(�7) = �9 (resp.�7), and the corresponding triple(3�=2; 3�=2;�3(�+ �)=2) is (�=3; 47�=42;�61�=42) (resp. (�=3; 11�=42;�25�=42)). With these values,'n(�) < 0 when n�=p 6 19�=42 (resp. n�=p 6 25�=42). The smallest such n is 13, which works forp > 22 (as long as 13 doesn't divide p). It remains to check p = 7; 14 or 21 (7 is assumed to divide p):n = 5 works when p = 7 or 21, and n = 11 works when p = 14. If 13 divides p, use the next solutionn = 31, and so on. We conclude inductively as above.
˜Lemma 4.2 For � = �2 and p = 8; 9; 10; 12; 14; 15; 16; 18, �(2�=p; �) is not contained in an arithmetic latticein SU(2; 1).Proof. For each of these values we �nd a Galois conjugation 'n of E such that 'n(�) < 0, where � = detH� , andacting nontrivially on Q [TrAd�]. For this last condition, it su�ces to check that 'n(cos 2�=p) 6= cos 2�=p (this istrue for all cases below, except n = 7 and p = 8, in which case '7(cos�=5) 6= cos�=5). The condition 'n(�) < 0can easily be checked, for instance numerically. We claim that the following 'n satisfy these conditions when� = �2: '7 works for p = 8; 9; 10; 12, and '11 works for p = 14; 15; 16; 18. ˜
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5 CommensurabilityIn this section we compare the adjoint trace �elds of our sporadic groups with those of the previously knownlattices in SU(2; 1), namely the Picard and Mostow lattices (see [DM], [M1], [M2], [S], [T] and [Par2] for anoverview). From the lists on p. 251 of [M1], p. 86 of [DM] and 548-549 of [T] we see that for these lattices �,
Q [TrAd�] is always of the form Q [cos 2�=d], where:� d = 3; 4; 5; 6; 8; 9; 10; 12; 18 for the arithmetic Picard lattices� d = 12; 15; 20; 24 for the nonarithmetic Picard lattices� d = 1; 8; 10; 12; 15; 18 for the arithmetic Mostow lattices� d = 12; 15; 18; 20; 24; 30; 42 for the nonarithmetic Mostow lattices.Moreover, only two nonarithmetic noncocompact lattices are known in SU(2; 1), both with d = 12. We takethis opportunity to make the following remark:Remark 5.1 The nonarithmetic Picard and Mostow lattices in SU(2; 1) fall into at least 7 and at most 9distinct commensurability classes.Indeed there are 6 distinct adjoint trace �elds (d = 15 and 30 give the same �eld), and for d = 12 there are twoclasses, one cocompact and the other noncocompact. Also, there are a priori 15 examples, but Mostow ([M2])and Sauter ([S]) �nd commensurabilities among some of them. See [Par2] for more details.Now we use the values from Proposition 3.3 to distinguish commensurability classes of sporadic groups,from each other and from the Picard and Mostow lattices. We will also use the fact that arithmeticity andcocompactness are commensurability invariants. We summarize the results from this section in the followingstatement:Theorem 5.2 For p > 3 and � 2 f�1; �1; :::; �9; �9g, the sporadic groups �(2�=p; �) are not commensurable toany Picard or Mostow lattice, except possibly when:� p = 4 or 6 (and � is any sporadic value)� p = 3 and � = �7� p = 5 and � or � = �1; �2� p = 7 and � = �4� p = 8 and � = �1� p = 10 and � = �1; �2; �2� p = 12 and � = �1; �7� p = 20 and � = �1; �2� p = 24 and � = �1The �rst observation follows simply from the order of the complex re
ections in the group, in other wordsthe fact that Q [TrAd�(2�=p; �)] contains cos 2�=p. The values of p > 3 that we rule out are the divisors of12; 15; 18; 20; 24; 30; 42.Lemma 5.1 For p 6= 3; 4; 5; 6; 7; 8; 9; 10; 12; 14; 15; 18; 20; 21; 24; 30; 42, the sporadic groups �(2�=p; �) are notcommensurable to any Picard or Mostow lattice. Moreover, they fall into in�nitely many distinct commensura-bility classes.We then examine the remaining values of p, where we can rule out most cases except when p = 3; 4 or 6:8



Lemma 5.2 When p 2 f5; 7; 8; 9; 10; 12; 14; 15; 18; 20; 21; 24; 30; 42g, the sporadic groups �(2�=p; �) are notcommensurable to any Picard or Mostow lattice, except possibly when:� p = 5 and � or � = �1; �2� p = 7 and � = �4� p = 8 and � = �1� p = 10 and � = �1; �2; �2� p = 12 and � = �1; �7� p = 20 and � = �1; �2� p = 24 and � = �1Proof. We use the values found for Q [TrAd�] in section 3, listed in the table at the end of that section, as wellas the following criterion.Let p > 3; p 6= 6 and d 2 N. Then: sin 2�=p = cos(p� 4)�=2p is in Q [cos 2�=d] if and only if:� p divides d (if 4 divides p)� 2p divides d (if p is even but not divisible by 4)� 4p divides d (if p is odd).This allows us to rule out the following cases:� p = 7; 9; 14; 15; 18; 21; 30; 42 when � or � = �1� p = 7; 8; 9; 12; 14; 15; 18; 21; 24; 30; 42 when � or � = �2 or �3� p = 5; 8; 9; 10; 12; 14; 15; 18; 20; 21; 24; 30 when � or � = �4� p = 5; 7; 8; 9; 10; 12; 14; 15; 18; 20; 21; 24; 30; 42 when � or � = �5 or �6� p = 5; 7; 8; 9; 10; 14; 15; 18; 20; 21; 24; 30; 42 when � or � = �7. ˜Lemma 5.3 �(2�=3; �4) is not commensurable to any Picard or Mostow lattice.Proof. Recall that this is the only arithmetic sporadic group. Q [TrAd�(2�=3; �4)] contains p21, which is notin Q [cos 2�=d] for d = 1; 3; 4; 5; 6; 8; 9; 10; 12; 15; 18. ˜Lemma 5.4 �(2�=3; �1), �(2�=3; �1), �(2�=3; �5), �(2�=5; �3) and �(2�=5; �3) are not commensurable to anyPicard or Mostow lattice.Proof. Indeed, in �(2�=3; �1), �(2�=3; �1), �(2�=5; �3) and �(2�=5; �3), R1R2 is parabolic (see [ParPau]),and in �(2�=3; �5) R2(R1J)5 is parabolic (details to appear in a forthcoming paper). It follows from Godement'scompactness criterion that such a group cannot be commensurable to a cocompact lattice. Therefore it su�cesto check that these groups are not commensurable to the noncocompact Picard and Mostow lattices, which bothhave adjoint trace �eld equal to Q [cos 2�=12]. Now for � = �1 or �1, Q [TrAd�(2�=3; �)] contains p2 sin 2�=p =p6=2 which is not in Q [cos 2�=12], and in the three other cases Q [TrAd�] contains cos 2�=5 which is not in
Q [cos 2�=12] either. ˜Lemma 5.5 �(2�=3; �1), �(2�=3; �2) and �(2�=3; �2) are not discrete, and therefore not commensurable toany Picard or Mostow lattice.Proof. In the �rst of these groups R1(R1J)4 is elliptic of in�nite order, and in the two others R1(R1J)5 is ellipticof in�nite order (details to appear in a forthcoming paper). ˜9
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