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Abstract

We prove that the so-called sporadic complex reflection triangle groups in SU(2,1) are all non-arithmetic
but one, and that they are not commensurable to Mostow or Picard lattices (with a small list of exceptions).
This provides an infinite list of potential new non-arithmetic lattices in SU(2,1).

1 Introduction

In [ParPau], Parker and the author considered symmetric triangle groups A in SU(2,1) generated by three
complex reflections through angle 27/p for p > 3 (the case of order 2 was studied by Parker in [Parl]). By
symmetric we mean that the group in question is generated by three complex reflections R;, R, and R3 with
the property that there exists an isometry J of order 3 so that R;j41 = JR;J~! (where j is taken mod 3). In
fact we study the group I' generated by R; and J, which contains A with index 1 or 3.

This type of group was first studied by Mostow in [M1] (for p = 3,4,5), where an additional condition was
imposed on the R; (namely the braid relation R;R;R; = R;jR;R;); these provided the first examples of non-
arithmetic lattices in SU(2,1). Following that Deligne-Mostow and Mostow constructed further non-arithmetic
lattices in SU(n,1) (n < 9) as monodromy groups of certain hypergeometric functions, in [DM] and [M2] (the
lattices from [DM] in dimension 2 were known to Picard who did not consider their arithmetic nature). These
lattices are (commensurable with) groups generated by complex reflections R; with other values of p; see [M2]
and [S]. Subsequently no new non-arithmetic lattices have been constructed.

In [ParPau] we showed that symmetric complex reflection triangle groups A = (R;, R, R3), if they are
discrete with R R, and R;R,;Rj3 elliptic, come in three flavors: Mostow’s lattices, subgroups of Mostow’s
lattices, and a third class which we called “sporadic groups” (see section 2 for a precise definition). Our main
motivation is that these new groups are candidates for non-arithmetic lattices in SU(2,1). In this paper we
analyze the adjoint trace fields Q[TrAdI"] of the sporadic groups I, and use this to determine which sporadic
groups are arithmetic, and which ones are commensurable to Mostow or Picard lattices. The main results are
Theorems 4.1 and 5.2, which say in essence that all sporadic groups are non-arithmetic (except one which was
studied in [ParPau]), and moreover that they are not commensurable to any of the Mostow or Picard lattices
(with an explicit list of possible exceptions).

The only required notions of complex hyperbolic geometry are the definitions of elliptic and regular elliptic
isometries, as well as complex reflections. These are standard and can be found for instance in the book [G].
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2 Sporadic groups

In this section we recall the setup and main results from [ParPau]. Our starting point was that groups I' =
(Ry,J) as defined above can be parametrised up to conjugacy by 7 = Tr(R;J); we denoted I'(¢), 7) the group
generated by a complex reflection R; through angle ¢ and a regular elliptic isometry J of order 3 such that
7 = Tr(RyJ). The generators for this group were given in the following explicit form:

[0 0 1]
J = 1100 (2.1)
0 1 OJ
[e2i9/3 - —eiv/3 F-I
R = 0 e w/3 0 (2.2)
0 0 e—i¢/3J

These preserve the Hermitian form (z, w) = w* H,z where

2sin(v/2) —je~ W/ jeiv/6F
H, = | ie™/57  2sin(¢y/2) —ie~®/57] . (2.3)
—ieW/0r /67 2sin(1p/2)

This always produces a subgroup I' of GL(3,C), but the signature of H, depends on the values of ¢ and
7. We determined the corresponding parameter space for 7 for any fixed value of ¢ (see sections 2.4 and 2.6 of
[ParPau]). When T preserves a Hermitian form of signature (2,1) we will say that T is hyperbolic.

We found necessary conditions for these groups to be discrete, and these conditions produced, along with
the groups previously studied by Mostow in [M1], a list of possibly discrete such groups:

Theorem 2.1 Let Ry be a complex reflection of order p and J a regular elliptic isometry of order 3 in PU(2,1).
Suppose that Ry J and RiRy = RiJR,J~ ' are elliptic. If the group ' = (Ry,J) is discrete then one of the
following is true:

e [ is one of Mostow’s lattices.
e [ is a subgroup of one of Mostow’s lattices.

e [ is one of the sporadic groups listed below.

Mostow’s lattices correspond to 7 = €’® for some angle ¢; subgroups of Mostow’s lattices to 7 = e?*® + e~
for some angle ¢, and sporadic groups (this can be taken as a definition) are those for which 7 takes one of the
18 values {01,907, ..., 09,09} where the o; are given in the following list:

o1 :=e™/3 e /6 2cos(m/4) oy = e€/P 4 e/ 2c0s(n/5) 03 := e/ + e 7/62cos(27/5)
oy 1= ¥ 4 AT L  8TYT o= 279 4 em /9 2 cos(2/5) 06 1= €2 4 e /9 2 cos(4n /5)
o7 = >0 47/ 2cos(2m/T) oy 1= €20 4 7/ 2cos(An)T) o9 i= €2™/? 4 e7/? 2 cos(67/7).

Therefore, for each value of p > 3, we have a finite number of new groups to study, the I'(27/p, 0;) and
I'(27/p,7;) which are hyperbolic. We determined exactly which sporadic groups are hyperbolic (see table in
section 3.3 of [ParPau]); notably these exist for all values of p, and more precisely:

Proposition 2.1 Forp > 4 and 7 = 01,04,03,04,05,06,07,08 0T 09, L'(21w/p, T) is hyperbolic.

When we study the question of arithmeticity of these groups, we will use the list of all hyperbolic sporadic
groups, as well as the following normalization of the entries of our matrices (proposition 2.8 of [ParPaul):

Proposition 2.2 The maps Ry, Ry and R3 may be conjugated within SU(2,1) and scaled so that their matriz
entries lie in the ring Z[1,7,eT™].



Explicitly, we conjugate the previous matrices by C' = diag(e*w/:", 1, ei’/’/3) and rescale by e~*/3. Con-
jugating by C and rescaling by 2sin(¢'/2) also brings H, to a Hermitian matrix with entries in the same ring
R = Z[r,7,eT™]. Therefore, a hyperbolic ['(1),7) can be realized as a subgroup of SU(H, R) where H is an
R—defined Hermitian form of signature (2,1).

Finally, we showed that some of the hyperbolic sporadic groups are non-discrete (see Corollary 4.2, Propo-
sition 4.5 and Corollary 6.4 of [ParPau]):

Proposition 2.3 Forp >3 and (T or T = 03,08 or 09), I'(2w/p, T) is not discrete. Also, forp >3, p#5 and
(T or T =0¢), I'(2n/p, T) is not discrete.

3 Trace fields

The trace field Q[TrI] is a classical invariant for a finitely generated subgroup I' of a linear group G. It is
invariant under conjugacy, but not commensurability. (We will say that two subgroups I'y and 'y of G are
commensurable if there exists g € G such that 'y N gl'sg~! has finite index in both I'; and gl'xg~!). To
obtain a commensurability invariant for such I', one can consider one of the following fields. Either the trace
field Q [Tr(™] (where I'™ is the subgroup of I' generated by n-th powers, for ' C GL(n,C)), as in [MR]
for SL(2,C) or [Mc] for SU(2,1). Another possibility is the adjoint trace field Q [TrAdI'], given by the adjoint
representation: Ad : G — GL(g), as in [M1], [M2] or [DM] for SU(n,1). The following result can be found for
instance in [DM] (Proposition 12.2.1):

Proposition 3.1 Q[TrAdI is a commensurability invariant.

This is the field that we will use here, as it is more convenient for our purposes. Indeed, this invariant trace
field has been computed for all known non-arithmetic lattices in SU(2,1) (see lists on p. 251 of [M1] and p. 86
of [DM]), and moreover it is easy to compute (or at least estimate) by the following result:

Proposition 3.2 For v € SU(2,1), TrAd(y) = |Tr(v)|?.

This statement is used several times in [M1], where it is referred to as lemma 4.2, but unfortunately doesn’t
appear in the final edition.

Proof. If U is a unitary group (of any signature), the adjoint representation of U is isomorphic to the
representation U @ U. O

We use this to find the following bounds for Q [TrAdI'(¢, 7)]:

Proposition 3.3 Q [cos, [T]?,Rer®,Re(e ¥ 73)] C Q[TrAdl'(¢,7)] C Q [7, 7, e NR.

Proof. The second inclusion follows from Propositions 2.2 and 3.2. For the first inclusion, we use Proposi-
tion 3.2 and compute |Tr(y)[? for various words 7, using the table of traces from section 4.1 of [ParPau] (see
also formulae in [Pr]):

i |T1”Rl|2 =5+ 4cosy

e |TrR;J|? = |7|? (by definition of 7)

o [Tx(RyJ)*P = |7|* + 4|7]* — 4Rer?

o [Te(J ' Ri)** = |r]* +4|7|* — 4Re(e "7?) O

We list the corresponding elements of Q [TrAdI'(27/p,o;)] in the following table. Numbers in the last
three columns are not the values of |7|?, Re 7% or Re (e ®¥72), but rather new algebraic numbers added to
Q[TrAdI'(27/p, 0;)] by these values. For example, the first four zeroes in the fourth column indicate that the
corresponding Re 72 is already in Q [cos ), |7]?].
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cos ¢ IT)? Re 7 | Re (e ¥79)

o1 | cos2m/p 0 0 V2 sin 27 /p
oy | cos2m/p | cosm/5 0 sin 27 /p
o3 | cos2m/p | cos3m/5 0 sin 27 /p

o4 | cos2m/p 0 0 V7 sin 27 /p
o5 | cos2m/p 0 cos 2w /5 | v/3sin2r/p
o6 | cos2m/p 0 cosdr/5 | V/3sin2r/p
o7 | cos2mw/p | cosw /7 0 V/3sin 27 /p

4 Arithmeticity

In [ParPau] (Propositions 6.5 and 6.6) we proved that only one of the sporadic groups with p = 3, namely
['(27/3,7%), is contained in an arithmetic lattice in SU(2,1). In this section we extend this to higher values of
p, and show that in fact this group is the only such example among all sporadic groups:

Theorem 4.1 Forp >3 and 7 € {01,071, ...,09,09}, I'(21/p, T) is contained in an arithmetic lattice in SU(2,1)
if and only if p =3 and T = 74.

We will use the following criterion for arithmeticity:

Proposition 4.1 Let E be a purely imaginary quadratic extension of a totally real field F', and H an E-defined
Hermitian form of signature (2,1) such that a sporadic group U is contained in SU(H; Og). Then T is contained
in an arithmetic lattice in SU(2,1) if and only if for all ¢ € Gal(F) not inducing the identity on Q [TrAdI, the
form Y H 1is definite.

This follows from lemma 4.1 of [M1]. Hypotheses (1) and (3) of that lemma (that Q [TrAdI] is a totally
real field, and TrAdry is an algebraic integer for all v € I respectively) are verified by Propositions 2.2 and 3.2,
using the special values of 7 for sporadic groups.

We will prove theorem 4.1 in several parts using this criterion. The first result follows the same lines as the

corresponding one in [ParPaul:

Proposition 4.2 The sporadic group I'(2w/p, ) is not contained in an arithmetic lattice in SU(2,1), with the
following possible exceptions:

e7=0; and (p=4orp=8)

o T =0y and (3 or 4 or 5 divides p)

o =53 and (p =8,9,10,12,14, 15,16 or 18)
er7=03and (p=3orp="T)

o T =05 and 5 divides p

o 7 =07 and 7 divides p.

Proof. We conjugate the generators and Hermitian form as in Proposition 2.2 so that their entries lie in
the ring Z[r,7,e*"¥], and are therefore algebraic integers in the field Q[7,7,e'¥]. (Recall that in our cases
¢ = 2m/p). We then find in each case a number field E as in Proposition 4.1, containing Q[r,7,e*¥], and a
Galois conjugation of E which acts nontrivially on Q [TrAdI'] and sends the Hermitian form to another indefinite
form. For the values of 7 and p which are not excluded above, we can use the same argument as in [ParPau],
namely that one of the Galois conjugations of E sends the parameter 7 to another value for which we know that
the Hermitian form is indefinite (from our description of the parameter space). This requires using a Galois
conjugation fixing e?*™/?. The details are as follows:



e For 7 = 0y or 77, let E = Q[e?™/%,ei™/4 ¢7/P]. If p is not divisible by 3 or 4, the Galois conjugation
sending /6 to e~ "/6 eim/4 to e=™/% and fixing e*7/? sends o, to o7. The corresponding Hermitian
form is indefinite for p = 3,4,5,6,7. This works for p = 5 or 7, but for p = 3, 4 or 6 we need to find
another Galois conjugation. For p = 3 or 6, sending e/"/% to €7""/¢ (and for compatibility e™/* to e~"/4)
fixes €2/ (respectively €*"/%) and sends o) to €*/357, which is equivalent to 7. These various Galois
conjugations act nontrivially on Re(e ™" 73%) = 5 cos) + 5v/2sin ¢, which is in Q [TrAdI.

e For 7 € {04,73,03,03}, let E = Q[ei™/6 ei™/> ¢27/P]. If p is not divisible by 3 or 4 or 5, the Galois
conjugation sending /% to e317/5 ¢in/6 o ¢77/6 and fixing e2"/? swaps o2 and o3, as well as g3 and
3. The Hermitian form corresponding to o2 and o3 is indefinite for all p > 3; for o3 it is indefinite
for 3 < p < 19, and for 73 it is indefinite for 3 < p < 6. This Galois conjugation acts nontrivially on
|T|? = 2 + 2cos(m/5) (vespectively 2+ 2cos(27/5)), which is in Q [TrAdI.

If p is not divisible by 2 or 3, the Galois conjugation sending e?™/¢ to e~¥"/6 and fixing the 2 other
generators of E sends o2 to 02. This works unless p = 8,9,10,12, 14,15, 16, 18.

e For 7 = 04 or 77, let E = Q[e*™/7,e*™/?], which contains iv/7 = 04 — 71 If p is not divisible by 7,
the Galois conjugation sending e?*™/7 to e~ 2"/ and fixing the other generator of E sends o4 to 7. The

corresponding Hermitian form is indefinite for p = 4,5,6. This Galois conjugation acts nontrivially on
8Re(e~™¥73) = 20 cos 1) + 4v/Tsin ), which is in Q [TrAdI.

e For 7 € {05,75,06,05}, let E = Q[e™/?,¢%7/5 ¢27/P]. If p is not divisible by 5, the Galois conjugation
sending e2im/5 o e4im/5 and fixing the 2 other generators of E sends o5 to og, and 75 to . The Hermitian
form corresponding to o5 and og is indefinite for all p > 3; for 73 it is indefinite for p = 2,4, and for 75
it is indefinite for 4 < p < 29. This Galois conjugation acts nontrivially on Rer® = 11/2 + 11 cos(27/5)
(respectively 11/2 + 11 cos(4w/5)), which is in Q [TrAdT].

If p is not divisible by 3, the Galois conjugation sending e to e and fixing the 2 other generators
of E sends o¢ to . This works for p = 5 (the only case where Proposition 2.3 doesn’t tell us that
(27w /p,06) and I'(27 /p,76) are nondiscrete).

iw/9 —im/9

e For 7 € {07,07,08,08,09,09}, let E = Q[ei™/? €27/ ¢27/P]. If p is not divisible by 7, the Galois
conjugation sending e*7/7 to ¢%7/7 and fixing the 2 other generators of E sends o7 to o and o9 to os,
and o7 to g9 and Ty to og. The Hermitian form corresponding to o7, og and oy is indefinite for all p > 4
(even 3 for o7, o9 ); for o7 it is indefinite for p = 2, for oy it is indefinite for 4 < p < 41, and for 7y it is
indefinite for 4 < p < 8. This Galois conjugation acts nontrivially on |7|* + |7]? — 2Rer® = 3 + 2 cos(27/7)
(respectively 3 + 2 cos(4n/7) and 3 + 2 cos(67/7)), which is in Q [TrAdI'.

e Finally, we know from Proposition 2.3 that, for 7 € {03,73,0s,0s,09,09}, I'(27/p,7) is nondiscrete for
all p, and in particular is not contained in an arithmetic lattice in SU(2, 1). a

We then examine the remaining cases, where we must now take into account the effect of our various
Galois conjugations on ¢ = e?™/P, We will use the following notation. In all cases, the number field E is a
cyclotomic field Q [eZi”/T]; the Galois group of E consists of the automorphisms ¢,, sending e?7/" to e/
for (n,r) = 1. We will use the following criterion (Corollary 2.7 of [ParPau]), which expresses the determinant
& of the Hermitian matrix H, in a convenient way:

Lemma 4.1 When 1 = €' + e + e~ and sin(y/2) > 0, the matriz H, has signature (2,1) if and only if
K = 8sin(3a/2 +v/2)sin(34/2 + ¢ /2) sin(—3(a + B8)/2 + ¥ /2) < 0. (4.1)
Proposition 4.3 I'(27/p, T) is not contained in an arithmetic lattice in SU(2,1) for:
e7=0; and (p=4orp=8)
e T =0y and 3 or 4 or 5 divides p

e T=04andp=>7



o T =05 and 5 divides p
o 7 =07 and 7 divides p.

Proof. The argument is the following. In each case we find a Galois conjugation ¢ (acting nontrivially on
Q [TrAdI) such that two of p(e***/2), p(e**/?), and p(e*(*+5)/2) lie in the open upper half of the unit circle,
and the third in the open lower half (or, in the case of 7 = 77, all three in the lower half). Then this property
is stable, i.e. if p(¢) is small enough, adding ¢(1)/2 to each of the three angles will not change it (where we
think of ¢ as acting on angles). We now give more details:

e As previously, for 7 = oy let E = Q[e?™/6,e!™/5 ¢27/P]; we will use ¢ € Gal(E) fixing o, up to a cube
root of unity. With the notation of Lemma 4.1, the corresponding triple (3a/2,33/2,—3(a + ()/2) is
(7/2,7/8, —57/8). We can achieve ¢, (d1) = o1 (up to a cube root of unity) by sending e!™/* to e**7/4
and fixing /% (up to a cube root of unity), or by sending e/ to e*3"/4 and e™/6 to e7i"/6 = —ein/6
(up to a cube root of unity). This means that n is congruent to (1 or -1 mod 8) and (1 or 5 or 9 mod
12) in the first case, and to (3 or -3 mod 8) and (3 or 7 or 11 mod 12) in the second. We win if we
can find such an n, coprime with p and such that n7w/p < 7/2, i.e. n < 2p + 1 (this is the largest angle
by which one can rotate the 3 points on the unit circle without any of them changing sides). The first
few solutions to the above congruences are n = (1), 3,9,11,17, 19, 25,27,33,35,41. Start with n = 3; this
works as long as 3 doesn’t divide p and p > 7. We check that for p = 4, p5(x) < 0 (and 5(v/2) # V2).
Assume then that 3 divides p, and use n = 11; this works as long as 11 doesn’t divide p and p > 23. This
leaves p = 9,12, 15, 18, 21; we check that n = 5 works for p = 9,18,21, n = 7 works for p = 12, and n = 11
for p = 15. Assume then that 33 divides p, and use n = 17; this works as long as 17 doesn’t divide p
and p > 34. This leaves p = 33, where we check that ¢5(k) < 0. We then go on in this fashion (skipping
solutions like 27 and 33 which are divisible by 3), assuming that 3 x 11 x 17 divides p and using n = 19
and so on. In this fashion p increases multiplicatively, whereas solutions to the above congruences increase
additively, therefore such n exist by a wider and wider margin. We conclude inductively that such an n
exists for p large enough (and we have checked the few exceptions for small p).

e As previously, for 7 = o3 or o3 let E = Q[e'™/6, ¢i™/> ¢*7/P] and consider ¢ € Gal(E) sending ¢™/° to

e3m/5 and e'/6 to €7"/6 = —ei™/6_ Then ¢ swaps o2 and o3. With the notation of Lemma 4.1, the corre-
sponding triples (3a/2,33/2, —3(a+0)/2) are (7/2,7/20, —117/20) when 7 = 03, and (7/2, 7w /20, —177/20)
when 7 = 3. Now when 3 or 4 or 5 divide p, ¢ also acts on e*"/?,
If 4 divides p, writing p = 4k, (e27™/P)F = i = (e™/%)3 is sent to —i, so (e?*™/P) must be a k-th root of —i,
in other words wy.e~ /2% for a k-th root of unity wy. In fact, if 3 or 5 don’t divide p one can send e2¥*/?
to any wg.e /%% say with wy, = e*7/* (this gives a better bound on p than 1). Then /2 is sent to 31)/2
(because —7/2k + 2w /k = 3w /2k), and the argument works for 37 /p < 117/20 (p > 6) when 7 = 03, and
3n/p < 177/20 (p > 4) when 7 = 02. There remain the cases where 5 divides p, as well as 7 = o3 and
p =4. In the latter case one can check that p13(k) < 0, with ;3(cos3m/5) # cos3m/5.

Now suppose that 5 divides p but 3 or 4 do not, and write p = 5k. As above, one can send e2*™/? to e57/p
and the same argument tells us that ¢(k) < 0 for p > 4 when 7 = 02 and p > 6 when 7 = 03. Whenp =75
and 7 = 03, one can again check that ¢13(k) < 0 (with ¢13(cos3m/5) # cos37/5).

If 3 divides p, we find ¢ € Gal(E) as above, namely we require that p(e?™/%) = e37/5 or ¢=37/5 and
@(ei™/6) = eTi7/6 yp to a cube root of unity, so that ¢ swaps o3 and o3 (up to a cube root of unity). Such
a  is realized as a ¢, if (and only if) n is congruent to (3 or -3 mod 10) and (3 or 7 or 11 mod 12).
The values of such n are 3, 7, 23, 27, 43, 47... Moreover, with the angle triples as above, ¢, (k) < 0 for
nmw/p < 17m/20 (when 7 = 03) or nm/p < ©/2 (when 7 = 03). We may use n = 7 as long as 7 doesn’t
divide p, which works for p > 9 when 7 = g9, and p > 15 when 7 = 3. We then check the cases p = 6 and
T = 09, as well as p = 6,9,12 and 7 = o3. It turns out that n = 7 works for all of these (renormalizing,
when p = 6, 7 x 27/6 as 27/6). Now if 7 also divides p, we use the next solution n = 23, which works
for p > 47 when 7 = 02, and p > 28 when 7 = o3, as long as 23 doesn’t divide p. We check that n = 11
works for p = 21 (7 = 09,03) and p = 42 (7 = 03). One can then assume that 21 x 23 divides p, and so
on. We conclude inductively as above.



e For 7 = 7y, E is as previously Q[e?7/7,e%™/?], and (3a/2,38/2, —3(a + B)/2) = (—3x/7,—67/7,97/7).
If 7 doesn’t divide p, consider ¢ € Gal(E) fixing e*™/7 and sending e*7/? to e2™"/P with (n,p) = 1 and
1 < n < 3p/7 (this is possible as p > 7). Then n7/p < 37/7 as required.

If 7 divides p, say p = Tk, one can again fix €**™/7 and send e*7/P to a k-th root of itself; when k > 3,
letting ¢ (e27/P) = 2" (1/k+1/P) works (i.e. ¢(k) < 0), because w/k + m/p < 37/7. Remain only the cases
p = 7, where one can check that pa(k) < 0 (with @2(cos27/7) # cos2x/7), and p = 14 where one can
check that pg(k) < 0 (with ¢g(cos7/7) # cos/T).

e As previously, for 7 = o5 or 06 let E = Q[e'™/?,e*7/5 ¢27/P] and consider ¢ € Gal(E) sending /% to
e*m/5 and fixing e/, Then ¢ swaps o5 and 0. With the notation of Lemma 4.1, the corresponding
triples (3a/2,308/2,—3(a+0)/2) are (7/3,137 /30, —237/30) when ¢(7) = 05, and (7/3,317/30, —417/30)
when ¢(7) = 0.

If 5 divides p, say p = 5k, ¢ must send €27/ to a k-th root of €*”/5 and one can choose any of these

if 3 does not divide p, such as e*"/5%, When 7 = o5 this works for 27/p < 177/30 (p > 4), and when
T = 0¢ for 2n/p < 117/30 (p > 6). When p = 5 and 7 = 0%, one can check that @4(x) < 0 (with
©4(V/3sin(27/5)) # V3sin(27/5)).

Now if 3 also divides p, we must look more closely at how ¢ is defined above. Namely such a ¢ is a ¢,
if and only if n is congruent to 2 mod 5 and 1 mod 18. The smallest such n is 37. However one can
relax slightly the definition of ¢ to allow @(e*™/?) = wze?™* for any cubic root of unity ws (this does not
affect 7). The conditions are then that n should be congruent to (2 mod 5) and (1 or 7 or 13 mod 18).
We can then use n = 7, unless 7 divides p. In that case ¢7 would work for 7w/p < 177/30 (p > 13)
when 7 = o6, and for 7r/p < 117/30 (p > 20) when 7 = 03. Since at this point 15 divides p, there
remains only the case where p = 15 and 7 = g, in which case one can check that ¢11(k) < 0 (with
11 (cos(2m/15)) # cos(2m/15).

Finally, if 7 also divides p (at this point p is divisible by 105), we can do the same thing. That is, we
claim that there exists n congruent to (2 mod 5) and (1 or 7 or 13 mod 18), coprime with p and such that
nm/p < 117/30 (i.e. n < 11p/30). For p = 105k, n = 37 satisfies these conditions for 1 < k < 36. After
that, suppose that 37 divides p and so on; we conclude inductively as above.

e As previously, for 7 = o7 let E = Q[e?™/?,e%/7 ¢2/P] and consider p,, € Gal(E) sending e*7/7 to e57/7
(resp. e~2"/7) and fixing €/? (up to a cube root of unity) This means that n should be congruent to
(3 resp. -1 mod 7) and (1 or 7 or 13 mod 18). Then ¢, (07) = 09 (resp.o7), and the corresponding triple
(3a/2,38/2,—3(a+ 0)/2) is (7 /3,477 /42, =617 [42) (resp. (7w /3,117 /42, —257/42)). With these values,
vn(k) < 0 when nw/p < 197/42 (resp. nw/p < 25w/42). The smallest such n is 13, which works for
p = 22 (as long as 13 doesn’t divide p). It remains to check p = 7,14 or 21 (7 is assumed to divide p):
n = 5 works when p = 7 or 21, and n = 11 works when p = 14. If 13 divides p, use the next solution
n = 31, and so on. We conclude inductively as above.

O

Lemma 4.2 For 7 =03 and p = 8,9,10,12,14,15,16,18, I'(27/p, T) is not contained in an arithmetic lattice
in SU(2,1).

Proof. For each of these values we find a Galois conjugation p,, of E such that ¢, (k) < 0, where k = det H,, and
acting nontrivially on Q [TrAdI’]. For this last condition, it suffices to check that ¢, (cos 27 /p) # cos 27 /p (this is
true for all cases below, except n = 7 and p = 8, in which case @7(cos 7/5) # cos7/5). The condition ¢, (k) < 0
can easily be checked, for instance numerically. We claim that the following ¢,, satisfy these conditions when
T =03: @7 works for p =8,9,10,12, and ¢11 works for p = 14,15, 16, 18. |



5 Commensurability

In this section we compare the adjoint trace fields of our sporadic groups with those of the previously known
lattices in SU(2, 1), namely the Picard and Mostow lattices (see [DM], [M1], [M2], [S], [T] and [Par2] for an
overview). From the lists on p. 251 of [M1], p. 86 of [DM] and 548-549 of [T] we see that for these lattices T,
Q[TrAdI] is always of the form Q [cos 27 /d], where:

e d=3,4,5,6,8,9,10,12, 18 for the arithmetic Picard lattices
e d=12,15,20,24 for the nonarithmetic Picard lattices
e d=1,8,10,12,15, 18 for the arithmetic Mostow lattices

e d=12,15,18,20, 24, 30,42 for the nonarithmetic Mostow lattices.

Moreover, only two nonarithmetic noncocompact lattices are known in SU(2,1), both with d = 12. We take
this opportunity to make the following remark:

Remark 5.1 The nonarithmetic Picard and Mostow lattices in SU(2,1) fall into at least 7 and at most 9
distinct commensurability classes.

Indeed there are 6 distinct adjoint trace fields (d = 15 and 30 give the same field), and for d = 12 there are two
classes, one cocompact and the other noncocompact. Also, there are a priori 15 examples, but Mostow ([M2])
and Sauter ([S]) find commensurabilities among some of them. See [Par2] for more details.

Now we use the values from Proposition 3.3 to distinguish commensurability classes of sporadic groups,
from each other and from the Picard and Mostow lattices. We will also use the fact that arithmeticity and
cocompactness are commensurability invariants. We summarize the results from this section in the following
statement:

Theorem 5.2 Forp > 3 and 7 € {01,071, ...,09,09}, the sporadic groups I'(2w/p, ) are not commensurable to
any Picard or Mostow lattice, except possibly when:

e p=40r6 (and T is any sporadic value)
e p=3 and T =07

ep=>5andT orT=01,0,

p=T7and T =04

p=8and T =0,

p=10 and T = 01,092,032

p=12 and 7 = 01,07
e p=20and T = 01,09
e p=24 and T =01

The first observation follows simply from the order of the complex reflections in the group, in other words
the fact that Q[TrAdI'(27/p, )] contains cos27w/p. The values of p > 3 that we rule out are the divisors of
12,15, 18, 20, 24, 30, 42.

Lemma 5.1 For p # 3,4,5,6,7,8,9,10,12,14,15,18,20, 21,24, 30,42, the sporadic groups I'(2w/p,T) are not
commensurable to any Picard or Mostow lattice. Moreover, they fall into infinitely many distinct commensura-
bility classes.

We then examine the remaining values of p, where we can rule out most cases except when p = 3,4 or 6:



Lemma 5.2 When p € {5,7,8,9,10,12,14, 15, 18, 20, 21, 24, 30,42}, the sporadic groups I'(2w/p,T) are not
commensurable to any Picard or Mostow lattice, except possibly when:

ep=>5and T orT =01,09
e p=Tand T =704
ep=8and7 =0,

e p=10 and T = 01,02,02
e p=12 and 7 = 01,07

e p=20and T = 01,09

e p=24and T =01

Proof. We use the values found for Q [TrAdI'] in section 3, listed in the table at the end of that section, as well
as the following criterion.
Let p > 3, p# 6 and d € N. Then: sin2x/p = cos(p — 4)7/2p is in Q [cos 27 /d] if and only if:

e p divides d (if 4 divides p)
e 2p divides d (if p is even but not divisible by 4)
e 4p divides d (if p is odd).
This allows us to rule out the following cases:
e p=17,9,14,15,18,21,30,42 when 7 or T = 03
e p=17,8,9,12,14,15,18,21,24,30,42 when 7 or T = 04 or 03
e p=5,8,9,10,12,14,15,18,20,21,24,30 when 7 or 7 = 04
p=25,7,8,9,10,12, 14, 15, 18, 20, 21, 24, 30,42 when 7 or T = o5 or og
p=15,7,8,9,10,14, 15,18, 20, 21, 24, 30,42 when 7 or T = o7. O

Lemma 5.3 ['(27/3,77) is not commensurable to any Picard or Mostow lattice.

Proof. Recall that this is the only arithmetic sporadic group. Q[TrAdI'(27/3,71)] contains v/21, which is not
in Q[cos2r/d] for d =1,3,4,5,6,8,9,10,12, 15, 18. O

Lemma 5.4 ['(2r/3,01), ['(27/3,571), ['(27/3,05), ['(21/5,03) and T'(27/5,73) are not commensurable to any
Picard or Mostow lattice.

Proof. Indeed, in I'(27/3,01), ['(27/3,571), ['(2w/5,03) and ['(27/5,73), R1 R2 is parabolic (see [ParPau]),
and in I'(27/3, 05) R2(R1J)® is parabolic (details to appear in a forthcoming paper). It follows from Godement’s
compactness criterion that such a group cannot be commensurable to a cocompact lattice. Therefore it suffices
to check that these groups are not commensurable to the noncocompact Picard and Mostow lattices, which both
have adjoint trace field equal to Q [cos 27/12]. Now for 7 = oy or o7, Q [TrAdI'(27/3, 7)] contains /2 sin 27 /p =
v/6/2 which is not in Q[cos27/12], and in the three other cases Q [TrAdI] contains cos2w/5 which is not in
Q [cos 27 /12] either. O

Lemma 5.5 ['(27/3,571), I'(27/3,02) and I'(27/3,732) are not discrete, and therefore not commensurable to
any Picard or Mostow lattice.

Proof. In the first of these groups Ry (R;.J)* is elliptic of infinite order, and in the two others R; (R;J)? is elliptic
of infinite order (details to appear in a forthcoming paper). O
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