Tangent Spaces and Morse functions

Tangent spaces

- 1. Show that for k odd the k-sphere S^k admits a nowhere vanishing vector field. Note: It is a deep result that the only spheres with a *trivial* tangent bundle are S^1, S^3 and S^7 .
- 2. Let G be a Lie group and $v \in T_1G$ a vector in the tangent space of the identity. For $g \in G$ define the vector $V(g) \in T_q(G)$ as

$$
V(g) = dL_g(v)
$$

where $L_q: G \to G$ is the diffeomorphism defined by $x \mapsto gx$ (left translation by g). Show that V is a smooth vector field on G. Deduce that Lie groups have a trivial tangent bundle. Hint: If $m: G \times G \to G$ is multiplication, show that the following composition is V :

$$
G \to T(G) \times T(G) \to T(G)
$$

where the first map is inclusion $g \mapsto ((g, 0), (1, v))$ (i.e. zero section in the first coordinate and constant $v \in T_1(G)$ in the second), and the second map is derivative dm of m.

Morse functions

- 3. Analyze the behavior of the given function $f : \mathbb{R}^2 \to \mathbb{R}$ at the origin. Is the critical point nondegenerate? If it is, determine the index.
	- (a) $f(x, y) = x^2 + 4y^3$
	- (b) $f(x, y) = x^2 2xy + y^2$
	- (c) $f(x, y) = x^2 + y^4$
	- (d) $f(x, y) = x^2 + 11xy + y^2/2 + x^6$
	- (e) $f(x, y) = 10xy + y^2 + 75y^3$
- 4. Let $S^n = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid$ $x_i^2 = 1$ and define $f: S^n \to$ R by $f(x_1, x_2, \dots, x_{n+1}) = x_{n+1}$. Show that f is a Morse function, and compute all critical points and their indices.
- 5. View $\mathbb{R}P^2$ as the quotient of the antipodal map $a: S^2 \to S^2$, $a(x, y, z) =$ $(-x, -y, -z)$, where $S^2 \subset \mathbb{R}^3$ is the unit sphere as usual. Show that the map $f : \mathbb{R}P^2 \to \mathbb{R}$ defined by $f([x, y, z]) = x^2 + 2y^2 + 3z^2$ is a Morse function and compute all critical points and their indices.
- 6. Let $U \subseteq \mathbb{R}^n$ be open. Show that a smooth function $f : U \to \mathbb{R}$ is Morse iff $\sqrt{2}$

$$
\det(H)^2 + \sum_{i} \left(\frac{\partial f}{\partial x_i}\right)^2 > 0
$$

where $H =$ $\partial^2 f$ $\partial x_i\partial x_j$ is the Hessian.

- 7. Prove the stability of Morse functions: Let X be a compact manifold and $F: X \times P \to \mathbb{R}$ smooth for a manifold P. If F_{p_0} is Morse for $p_0 \in P$, show that F_p is Morse for all p in a neighborhood of p_0 . Hint: Use Problem 6.
- 8. Let X be a compact manifold. Show that there is a Morse function $f: X \to \mathbb{R}$ that has distinct values at distinct critical points of X. Hint: Start with a Morse function $g: X \to \mathbb{R}$ with critical points x_1, \dots, x_k , fix mesa functions $\rho_i : X \to [0, 1]$ that are 1 in a small neighborhood of x_i and 0 outside a slightly larger neighborhood. Then let $f = g + \sum a_i \rho_i$ for small and generic a_i .