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We formulate and study a one-dimensional single-species di¬usive-delay population
model. The time delay is the time taken from birth to maturity. Without di¬usion,
the delay di¬erential model extends the well-known logistic di¬erential equation by
allowing delayed constant birth processes and instantaneous quadratically regulated
death processes. This delayed model is known to have simple global dynamics similar
to that of the logistic equation. Through the use of a sub/supersolution pair method,
we show that the di¬usive delay model continues to generate simple global dynamics.
This has the important biological implication that quadratically regulated death
processes dramatically simplify the growth dynamics. We also consider the possibility
of travelling wavefront solutions of the scalar equation for the mature population,
connecting the zero solution of that equation with the positive steady state. Our
main ­ nding here is that our fronts appear to be all monotone, regardless of the size
of the delay. This is in sharp contrast to the frequently reported ­ ndings that delay
causes a loss of monotonicity, with the front developing a prominent hump in some
other delay models.

Keywords: di®usive-delay di®erential equation; wavefront;
characteristic equation; stage structure; population model

1. Introduction

It has become recognized in recent years that the well-known delayed logistic di¬er-
ential equation

dx(t)

dt
= rx(t)

µ
1 ¡ x(t ¡ ½ )

K

¶
; (1.1)

where r, K and ½ are positive parameters, and the more general distributed delay
equation

dx(t)

dt
= rx(t)

µ
1 ¡ 1

K

Z t

¡1
k(t ¡ s)x(s) ds

¶
(1.2)

have certain weaknesses as models for the evolution of a single species x(t). Often, the
use of such models is not so much that they have any real microscopic justi­ cation,
but more a consequence of their having solution properties that mirror the ecosystem
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Figure 1. Solutions of the delayed logistic equation x 0 = x(1 ¡ x(t ¡ ½ ))
for ½ = 1 (stable) and ½ = 3 (volatile).

under consideration. For example, to model an oscillating population, it is natural to
consider the use of an equation that possesses periodic solutions. But although (1.1)
does possess periodic solutions for r½ > 1

2
º , it is well known that the amplitude

of these oscillations increases extremely rapidly as r½ is increased, leading to an
oscillation which when plotted shows an unrealistically large maximum value, and a
minimum so low it is barely distinguishable from zero. This renders the assumption of
the existence of a constant carrying capacity K absurd and would even raise doubts
about the continued validity of a continuum model at such times (see ­ gure 1).

Also, it is frequently stated in the literature that because the equilibrium, or
steady-state, solutions of the model equations will not depend on time, the time
delays must be incorporated in such a way that the equilibrium solutions will not
depend on them. However, the fact that the equilibrium solutions are not time depen-
dent does not, in itself, mean they cannot depend on the delay parameters. As we
illustrate below, in many ecological scenarios, it may be quite natural to have the
equilibrium solutions showing some dependence on the delays. For example, consider
the following system ­ rst introduced by Aiello & Freedman (1990),

_ui(t) = ¬ um (t) ¡ ® ui(t) ¡ ¬ e¡ ® ½ um (t ¡ ½ );

_um (t) = ¬ e¡ ® ½ um (t ¡ ½ ) ¡ ­ u2
m (t);

)
(1.3)

where ¬ , ­ , ® and the delay ½ are positive constants. In this system, ui and um denote,
respectively, the numbers of immature and mature members of the population. The
delay ½ is the time taken from birth to maturity. The rate at which individuals are
born is taken to be proportional to the number of matures at that time; this is the
¬ um (t) term. Death of immatures is modelled by the term ¡ ® ui(t). Death of matures
is modelled by a quadratic term, as in the logistic equation. The term ¬ e¡ ® ½ um (t ¡ ½ )
appearing in both equations represents the rate at time t at which individuals leave
the immature and enter the mature class, having just reached maturity. These are
individuals who were born at time t ¡ ½ . Therefore, the rate of entering the mature
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class is ¬ um (t ¡ ½ ) times the fraction of those born at time t ¡ ½ who are still alive now.
That this fraction is e¡ ® ½ follows from the assumption that the death of immatures
is following a linear law given by the term ¡ ® ui(t) (on the basis of such a law, if N (t)
is any population, then the number that survive from t ¡ ½ to t is e¡ ® ½ N (t ¡ ½ )). It is
known that model (1.3) generates simple global dynamics (all positive solutions tend
to the unique positive steady state) similar to that of the logistic equation (Aiello &
Freedman 1990). A subsequent paper of Aiello et al . (1992) extended this model to
allow the time delay to be state dependent. However, their model proves to be too
complicated for a thorough understanding.

System (1.3) possesses equilibrium states (steady states) given by

(u ¤
i ; u ¤

m ) = (0; 0) and

µ
¬ 2

­ ®
e¡ ® ½ (1 ¡ e¡ ® ½ );

¬

­
e¡ ® ½

¶
; (1.4)

and it should be noted that the second of these depends on the delay ½ , as we
should expect. After all, if the time from birth to maturity is long, then many of
the immatures will not survive the juvenile phase, leading to a reduced mature
adult population. Accordingly, it is not at all unnatural to have an equilibrium state
showing a dependence on the delay.

It is our aim in this paper to study a di¬usive version of the system (1.3) to
allow for individuals moving around. When motion is allowed for, the derivation
of the time-delayed term has to be altered to take proper account of the motion.
Actually, the immatures may not move at all, especially if the immature phase is
a larval phase, but our analysis allows for this possibility. If they do move, then
certainly an individual is expected to enter the mature population class at a point in
space di¬erent from where it was born. Taking account of this motion in re-deriving
the time-delayed term is not necessarily a straightforward matter. It depends on
the assumptions being made about the motion and also on the spatial domain. An
in­ nite domain is slightly easier to handle than a ­ nite one because, in the latter
case, the individuals, as well as moving around, may have been interacting with the
domain’s boundaries. To keep the analysis as simple as possible, we shall assume
the individuals are performing an unbiased random walk, so that the motion can
be modelled in terms of Fickian di¬usion as described in Murray (1989). Under
this assumption, di¬usion is approximated by adding Laplacian di¬usion terms to
the ordinary di¬erential equations (ODEs) that model the temporal dynamics, and
re-deriving the delay term as we describe below.

In the ­ rst instance, we shall work on the in­ nite one-dimensional spatial domain
x 2 ( ¡ 1; 1). The case of a ­ nite domain is slightly di¬erent and will be consid-
ered later. The immature and mature populations, ui(t) and um (t), are now popu-
lation densities ui(x; t) and um (x; t), respectively. We argue that the delayed term
¬ e¡ ® ½ um (t ¡ ½ ) appearing twice in system (1.3), and representing the rate of leaving
the immature and entering the mature class, must be replaced by

Z 1

¡1

1p
4 º di ½

e¡(x¡y)2=4di ½ e¡ ® ½ ¬ um (y; t ¡ ½ ) dy; (1.5)

where di > 0 is the di¬usivity of the immature species. If the immatures are not, in
fact, moving, then we would allow di ! 0 in (1.5) to conclude that the corresponding
expression is e¡ ® ½ ¬ um (x; t ¡ ½ ). If di > 0, expression (1.5) allows for the fact that an
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individual that enters the mature class at position x will most likely have been born
at some other point y. So, according to the assumptions about births and deaths
made in our earlier discussion about system (1.3), the total rate of entering the
mature class at time t and position x is therefore now made up as follows,

¬ um (y; t ¡ ½ ) = number born at y;

e¡ ® ½ ¬ um (y; t ¡ ½ ) = number born at y and still alive now;

1p
4 º di ½

e¡(x¡y)2=4di ½ e¡ ® ½ ¬ um (y; t ¡ ½ ) = number born at y still alive
and now at x;

and ­ nally the integral totals up the contributions from all parts of the domain.
Note that of those individuals born at y and still alive, to calculate the number
that are now at x, we are multiplying by g(x; y; t = ½ ), where g(x; y; t) satis­ es
the linear di¬usion equation @g=@t = di@

2g=@x2, ¡ 1 < x < 1, with the initial
condition g(x; y; 0) = ¯ (x ¡ y). These arguments re®ect the assumptions we have
made about the di¬usivity being linear (Fickian) di¬usion. See Gourley & Britton
(1996) for more detailed discussions of these points. The reader will also realize
that, on a ­ nite domain, the use of this heat kernel cannot allow for interactions
with the domain’s boundaries and will therefore be inappropriate. Instead, a more
complicated kernel must be used. This point will be discussed later.

Thus we initially study the model

@ui

@t
= di

@2ui

@x2
+ ¬ um ¡ ® ui ¡ ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡(x¡y)2=4di ½ um (y; t ¡ ½ ) dy;

@um

@t
= dm

@2um

@x2
+ ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡(x¡y)2=4di ½ um (y; t ¡ ½ ) dy ¡ ­ u2
m

9
>>>=

>>>;

(1.6)
for x 2 ( ¡ 1; 1) and t > 0. While our analysis makes no particular assumptions
as to the relative magnitudes of the di¬usivities di, dm , two possibilities of partic-
ular interest ecologically are (i) di = 0, meaning the immatures do not move, and
(ii) di = dm , which will be the case when the immatures stay with their parents. It
should be noted that (1.6) is not a fully coupled system in that the second equation,
for the mature population um , can be solved independently of the ­ rst. Consideration
of this second equation alone is an interesting and non-trivial mathematical problem
in its own right.

The main purpose of this paper is to examine how the solutions of the di¬usive
system (1.6) (and, in particular, the solution of the second equation thereof, consid-
ered independently of the ­ rst) compare with the solutions of other delayed di¬usion
models of population dynamics, such as the di¬usive Hutchinson’s equation

@u

@t
(x; t) =

@2u

@x2
(x; t) + ru(x; t)

µ
1 ¡ u(x; t ¡ ½ )

K

¶
: (1.7)

Starting with the in­ nite domain system (1.6), we shall analyse the linear stabil-
ity of the system about its two spatially uniform equilibrium solutions (the equi-
libria of (1.6) are the same as those of (1.3) and are given by (1.4)). Then we
consider the possibility of travelling wavefront solutions of the scalar equation for
the mature population um connecting the zero solution of that equation with the
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um = ( ¬ =­ ) exp( ¡ ® ½ ) state. These fronts will be compared with the results of some
recent studies of travelling-front solutions of other scalar delay equations with dif-
fusion such as (1.7). Our main ­ nding here is that our fronts are apparently all
monotone, regardless of the size of the delay ½ (investigators of other delay problems
frequently have reported that increasing the delay causes a loss of monotonicity, with
the front developing a prominent hump).

Then the case of a ­ nite domain will be discussed. The time-delay term must
be re-derived using a di¬erent spatial distribution kernel. Our main result here is
a powerful global convergence theorem, which holds without any restriction on the
parameters other than that they be positive.

2. Linear stability and wavefronts

We start by linearizing (1.6) about the non-zero equilibrium state. The zero state
will be discussed later. Using methods now accepted as standard, we ­ nd, after
some algebra, that the linearized equations admit non-trivial solutions of the form
(c1; c2) exp(¼ t + ikx) if and only if the determinant

¯̄
¯̄
¯
¼ + ® + dik

2 ¡ ¬ + ¬ e¡ ® ½ e¡ ¼ ½ e¡dik
2 ½

0 ¼ ¡ ¬ e¡ ® ½ e¡ ¼ ½ e¡dik
2 ½ + 2¬ e¡ ® ½ + dm k2

¯̄
¯̄
¯ = 0:

The roots ¼ of this dispersion relation are ¡ ® ¡ dik
2(< 0), together with the roots

of the transcendental equation

¼ ¡ ¬ e¡ ® ½ e¡ ¼ ½ e¡dik
2 ½ + 2 ¬ e¡ ® ½ + dm k2 = 0: (2.1)

Note that this analysis is simpli­ ed by the system not being fully coupled. The
dispersion relation (2.1) is, in fact, what one would obtain from the equation for the
mature population um only, treated independently of the ui equation. Even so, note
that both di¬usivities di and dm are still present. As far as stability is concerned, if
it is true that, for every wavenumber k > 0, the roots of (2.1) all lie in the left half
of the complex plane, i.e. satisfy Re ¼ < 0, then we may declare that the non-zero
steady state of (1.6) is linearly stable. We now show that this is, in fact, the case
for any positive values of the other parameters. Certainly, when the delay ½ is zero,
equation (2.1) has only one real negative root ¡ ¬ ¡ dm k2. Standard theory tells us
that if we increase ½ from zero new roots will appear, which, for small ½ , will be in the
left half of the complex plane. We must investigate whether any of these roots cross
the imaginary axis as ½ is further increased. To investigate this possibility, set ¼ = i!
with ! real and positive. Substituting into (2.1), taking the complex conjugate and
then eliminating exp(i!½ ) terms yields

!2 + 4¬ 2e¡2® ½ + 4 ¬ dm k2e¡ ® ½ + d2
m k4 = ¬ 2e¡2® ½ e¡2dik

2 ½ 6 ¬ 2e¡2® ½ ;

giving !2 +3 ¬ 2e¡2 ® ½ +4 ¬ dm k2e¡ ® ½ +d2
m k4 6 0, which is impossible. Our conclusion,

therefore, is that the non-zero steady state is linearly stable, independently of the
size of the delay and other parameters and, in particular, it is not destabilized by
di¬usion. For the corresponding ODE system (1.3) (which arises as a special case
of (1.6) when we restrict to the sub-class of spatially uniform solutions), it is known
(see Aiello & Freedman 1990; Kuang 1993) that the non-zero steady state is, in fact,
globally asymptotically stable for all values of the parameters.
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By using similar ideas, it is straightforward to show that the zero steady state
(u ¤

i ; u ¤
m ) = (0; 0) of (1.6) is always unstable.

Concentrating now on the second equation of (1.6) only, and motivated by the
results of the linearized analysis we have just carried out, it is natural to inquire
into the possibility of travelling wave-front solutions connecting the zero solution
to the um = ( ¬ =­ ) exp( ¡ ® ½ ) solution of that equation. We must stress from the
outset that we do not have conclusive proof of the existence of such a solution. So
et al . (2001) proved existence of a travelling-front solution to another equation with
spatio-temporal delay, but their proof does depend heavily on the structure of their
particular equation and their ideas do not seem to adapt to the equation of the
present paper. However, some asymptotic analysis of the full nonlinear problem and
examination of the linearized equations as x ! §1 suggest the existence of a front
that is monotone for all values of the parameters, including the delay ½ . This is in
contrast to analytical and numerical studies of other delay and non-local reaction{
di¬usion equations, which can have non-monotone fronts for su¯ ciently large delays
(see, for example, Ashwin et al . 2002; Gourley 2000a; b; So et al . 2001).

To seek a travelling-front solution of the second equation of (1.6), we set um (x; t) =
U (z), where z = x + ct and c > 0 without loss of generality. The ODE to be satis­ ed
by U(z) is

cU 0(z) = ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡y2=4di ½ U(z ¡ c½ ¡ y) dy ¡ ­ U 2(z) + dm U 00(z); (2.2)

with

U ( ¡ 1) = 0 and U (1) =
¬

­
e¡ ® ½ : (2.3)

A solution of (2.2), (2.3) corresponds to a leftward-moving travelling-front solution
moving with speed c. Motivated by ecological considerations, we are interested only
in solutions that are non-negative for all z. We can obtain a necessary condition
on the front speed c by linearizing (2.2) ahead of the front, i.e. for z ! ¡ 1. The
linearized equation will be

cU 0(z) = ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡y2=4di ½ U(z ¡ c½ ¡ y) dy + dm U 00(z):

Seeking solutions of this proportional to exp( ¶ z), we ­ nd that ¶ satis­ es

c¶ ¡ dm ¶ 2 = ¬ e¡ ® ½ e¡ ¶ c½ e¶ 2di ½ : (2.4)

If ½ is zero, equation (2.4) reduces to a quadratic equation and the nonlinear equa-
tion (2.2) reduces to cU 0 = ¬ U ¡ ­ U2+dm U 00. Using standard phase-plane arguments,
we ­ nd that the minimum wave speed c for having a solution that is non-negative
for all z is 2

p
¬ dm . Now assume that ½ is positive. In order to have a front U(z) that

tends to 0 as z ! ¡ 1 without oscillating, it will be necessary for (2.4) to have some
real positive roots. The onset of oscillations is associated with a total loss of all real
positive roots of (2.4). Figure 2 shows a plot of the left- and right-hand sides of (2.4)
as functions of ¶ , showing a situation giving two real positive roots.

Generically, there are either two real positive roots or none, and it is clear that the
latter situation can be brought about by changing the values of certain parameters.
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right-hand side

left-hand side

l0

Figure 2. Graphs of the left- and right-hand sides of (2.4) as functions of ¶ .

The critical situation (determining the minimum wave speed c) is when the two
curves touch, so that there is just one repeated root, and this happens when

c¶ ¤ ¡ dm ¶ 2
¤ = ¬ e¡ ® ½ e¡ ¶ ¤c½ e¶ 2

¤di ½ ;

c ¡ 2dm ¶ ¤ = ¬ e¡ ® ½ (2 ¶ ¤ di ½ ¡ c½ )e¡ ¶ ¤c½ e¶ 2
¤di ½ ;

)
(2.5)

where ¶ ¤ is the single repeated root. On elimination of the exponential terms, we
­ nd that ¶ ¤ must satisfy the cubic equation

f( ¶ ¤ ) := 2didm ½ ¶ 3
¤ ¡ (c½ dm + 2c½ di) ¶

2
¤ + (c2 ½ ¡ 2dm ) ¶ ¤ + c = 0: (2.6)

It is straightforward to see that this cubic equation always has one real negative root
and two real positive roots, one less than and one greater than c=dm (that the latter
is so follows from the fact that f(c=dm ) = ¡ c < 0). The root that is larger than c=dm

cannot satisfy the ­ rst equation of (2.5). Since ¶ ¤ > 0, we conclude that ¶ ¤ must
be the smaller of the two positive roots of (2.6). Knowing ¶ ¤ , the value of c given
implicitly by either equation of (2.5), which we now call cm in ( ½ ), is the minimum
wave speed. Unfortunately, the minimum speed cannot be computed explicitly.

We do know that when ½ = 0 the minimum speed is 2
p

¬ dm . It is of interest to
inquire whether the minimum speed will decrease or increase when delay is intro-
duced, and we can gain useful information on this using a perturbation analysis for
small ½ . Note that ¶ ¤ depends on ½ too. Therefore, we write

cm in ( ½ ) = c
(0)
m in + ½ c

(1)
m in + ½ 2c

(2)
m in + ¢ ¢ ¢ ;

¶ ¤ = ¶
(0)
¤ + ½ ¶

(1)
¤ + ½ 2 ¶

(2)
¤ + ¢ ¢ ¢ ;

where c
(0)
m in = 2

p
¬ dm and ¶

(0)
¤ = c

(0)
m in =2dm . After some algebra, we ­ nd that

c(1)
m in =

r
¬

dm

( ¬ di ¡ 2 ¬ dm ¡ ® dm );

so that, for small delays, the minimum speed is given by

cm in ( ½ ) = 2
p

¬ dm + ½

r
¬

dm
( ¬ di ¡ 2 ¬ dm ¡ ® dm ) + ¢ ¢ ¢ : (2.7)
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Thus, whether the speed is increased or reduced by a small delay ½ depends on the
sign of ¬ di ¡ 2 ¬ dm ¡ ® dm . As we mentioned before, we consider the cases di = 0 and
di = dm to be of particular relevance ecologically. In either of these cases, c(1)

m in < 0,
so that the wave is slowed down by the delay. More generally, it will be slowed down
if ¬ di < 2 ¬ dm + ® dm .

Motivated by studies of fronts in delay equations by other investigators, we are
interested in whether the travelling-front solutions are monotone or not. We shall now
present a strong case (though not a conclusive proof ) that our fronts are monotone
for all values of the delay ½ > 0. We shall do this (i) by studying the linearization
at the other end of the front (the rear), and (ii) by computing a uniformly valid
asymptotic expression for the front when the speed c ! 1 and proving that the ­ rst
term of this is indeed monotone for all z.

To investigate the linearization at the rear of the front, where z ! 1 and U(z) !
( ¬ =­ ) exp( ¡ ® ½ ), we set

U (z) =
¬

­
exp( ¡ ® ½ ) + V (z);

substitute into (2.2) and linearize to obtain

cV 0(z) = ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡y2=4di ½ V (z ¡ c½ ¡ y) dy ¡ 2 ¬ e¡ ® ½ V (z) + dm V 00(z):

Solutions proportional to exp( ¶ z) exist whenever ¶ satis­ es

c¶ ¡ dm ¶ 2 = ¬ e¡ ® ½ e¡ ¶ c½ e¶ 2di ½ ¡ 2 ¬ e¡ ® ½ : (2.8)

Since all this is for z ! 1, monotonicity now requires the above equation to have
real negative roots. Oscillations would set in if all such roots were lost, and this is
the situation in which other investigators have observed `humps’ and oscillations in
the travelling-front solutions of their delay models. However, the reader can easily
verify, by plotting the left- and right-hand sides of (2.8) against ¶ , that, in fact, equa-
tion (2.8) always has one real negative root for any positive values of the parameters.
This suggests that oscillations never set in and that the front probably approaches
( ¬ =­ ) exp( ¡ ® ½ ) monotonically as z ! 1 for any delay ½ > 0.

To gain further evidence for the above-mentioned remarks on the front’s likely
behaviour, we now aim to construct a uniformly valid asymptotic approximation to
our front for large values of the speed c. Our approach here is based on ideas of
Canosa (1973), who obtained a similar such approximation to the travelling-front
solution of the well-known Fisher equation. Although Canosa’s analysis was carried
out for c ! 1, it is known that, even if the speed c is given its lowest ecologically
relevant value (i.e. the minimum speed for positive solutions), the ­ rst term alone
of the asymptotic solution for Fisher’s equation is within a few percent of the true
solution (Murray 1989). We shall use the approach here to gain further evidence for
the monotonicity of our fronts. This asymptotic approach for large wavespeeds has
recently been shown to also be of value in studying certain coupled systems (Sherratt
2000).

Following the approach of Canosa (1973), we shall assume c is large, introduce the
small parameter

" =
1

c2
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and seek a solution of (2.2) of the form U (z) = ~U (~z), where ~z =
p

"z = z=c. Under
this transformation, equation (2.2) becomes

~U 0(~z) = ¬ e¡ ® ½

Z 1

¡1

1p
4 º di ½

e¡y2=4di ½ ~U (~z ¡ ½ ¡
p

"y) dy ¡ ­ ~U2(~z)+"dm
~U 00(~z): (2.9)

This can be approximated by Taylor expanding ~U(~z ¡ ½ ¡
p

"y) about ~z ¡ ½ to yield
the following delay di¬erential equation,

~U 0(~z) = ¬ e¡ ® ½ [ ~U(~z ¡ ½ ) + "di ½ ~U 00(~z ¡ ½ ) + O("2)] ¡ ­ ~U2(~z) + "dm
~U 00(~z); (2.10)

which has to be solved subject to

~U( ¡ 1) = 0 and ~U (1) =
¬

­
e¡ ® ½ :

We seek a solution of the form

~U(~z) = ~U0(~z) + " ~U1(~z) + ¢ ¢ ¢ : (2.11)

Substituting into (2.10) and comparing powers of "0 yields the ­ nding that ~U0 must
satisfy

~U 0
0(~z) = ¬ e¡ ® ½ ~U0(~z ¡ ½ ) ¡ ­ ~U 2

0 (~z); (2.12)

with
~U0( ¡ 1) = 0 and ~U0(1) =

¬

­
e¡ ® ½ : (2.13)

Problem (2.12), (2.13) is invariant to translations in ~z. The solution is unique up
to these translations. The slight non-uniqueness is not a problem for us, since we
are concerned primarily with monotonicity, but we can, if we wish, eliminate the
non-uniqueness by requiring that

~U0(0) =
¬

2­
exp( ¡ ® ½ ):

The solution ~U0(~z) is the lowest-order term in the asymptotic expression (2.11) and
what we shall now do is prove the following theorem concerning monotonicity of
~U0(~z) as z ! ¡ 1. It is already known (Aiello & Freedman 1990) that all positive
solutions of (2.12) tend to ( ¬ =­ )e¡ ® ½ as ~z ! 1.

Theorem 2.1. Any positive solution ~U0(~z) of (2.12) subject to (2.13) is a mono-
tonic non-decreasing function of ~z for all ¡ 1 < ~z < 1.

Proof . For notational convenience, we restate and renumber (2.12), (2.13) without
the tildes and subscript on U ,

U 0(z) = ¬ e¡ ® ½ U(z ¡ ½ ) ¡ ­ U 2(z); U( ¡ 1) = 0; U(1) =
¬

­
e¡ ® ½ : (2.14)

The proof of the theorem is in three stages. We prove that

(i) the decay of a positive solution of (2.14) to zero as z ! ¡ 1 is strictly mono-
tone;

(ii) a positive solution takes values in the range [0; ( ¬ =­ ) exp( ¡ ® ½ )] only; and,
­ nally,

(iii) a positive solution is monotone non-decreasing.
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To prove (i), we let

¯ ( ³ ) = ­ ¡1 ¬ expf¡ ® ½ ¡ ¬ ½ expf(­ ³ ¡ ® ) ½ gg

and choose " 2 (0; minf1; ¯ (1)g). There exists a z" such that z 6 z" implies that
0 < U (z) < ": Hence, for z 6 z", we have

U 0(z) > ¡ ­ U2(z) > ¡ ­ "U (z);

which yields U (z) > U (z ¡ ½ )e¡­ "½ or, equivalently,

U (z ¡ ½ ) 6 U (z)e­ "½ :

Substituting this into the equation of (2.14) leads to

U 0(z) 6 ¬ e(­ "¡ ® ) ½ U(z) ¡ ­ U 2(z) 6 ¬ e(­ "¡ ® ) ½ U (z);

which yields
U(z) 6 U (z ¡ ½ )e ¬ ½ exp f(­ "¡ ® ) ½ g:

Hence we have, for z 6 z",

U (z ¡ ½ ) > U (z)e¡ ¬ ½ exp f(­ "¡ ® ) ½ g

and

U 0(z) > ¬ e¡ ® ½ ¡ ¬ ½ exp f(­ "¡ ® )½ gU (z) ¡ ­ U2(z):

Therefore, U 0(z) > 0 if z 6 z" and

U(z) < ­ ¡1 ¬ expf¡ ® ½ ¡ ¬ ½ expf(­ " ¡ ® ) ½ gg = ¯ ("):

We now show that U(z) < ¯ (") follows automatically from z 6 z". Notice that ¯ (")
is strictly decreasing. Hence, since " < 1, we have ¯ (") > ¯ (1). Therefore, if z 6 z",
we have U (z) < " < minf1; ¯ (1)g < ¯ ("), as desired. Thus z 6 z" implies U 0(z) > 0;
proving (i).

To prove (ii), suppose that there exists a point where U > ( ¬ =­ ) exp( ¡ ® ½ ). Then
U must attain a global maximum z2. At z2, we have the fact that U 0(z2) = 0 and
U (z2) > ( ¬ =­ ) exp( ¡ ® ½ ). Then

0 = U 0(z2) = ¬ e¡ ® ½ U(z2 ¡ ½ ) ¡ ­ U2(z2)

6 ¬ e¡ ® ½ U(z2) ¡ ­ U 2(z2):

This means that 0 6 U (z2) 6 ( ¬ =­ ) exp( ¡ ® ½ ), which is a contradiction.
We now prove (iii), i.e. that the solution is monotone non-decreasing. Suppose this

is false. Then, in view of the boundary conditions, the solution must have at least
one local maximum. Let z3 denote the leftmost such point, which is well de­ ned since
we know the decay to zero as z ! ¡ 1 is monotone. Now, since the solution must
approach ( ¬ =­ ) exp( ¡ ® ½ ) as z ! 1, yet is con­ ned to the range [0; ( ¬ =­ ) exp( ¡ ® ½ )],
there must be a ­ rst point z5 > z3 with U 0(z5) = 0 and U 00(z5) > 0. The reader should
note that z5 need not be a local minimum; it could, in principle, be a horizontal point
of in®ection (see ­ gure 3, which illustrates some of the possibilities). There will also
exist a point z4 between z3 and z5 such that U 0(z4) < 0 and U 00(z4) = 0, as shown
in ­ gure 3.
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zz3 z4 z5

Figure 3. Graph illustrating how the solution U (z) of (2.14) would lose monotonicity. The
dashed parts suggest how it could behave for z > z5 . The conclusion is that, in fact, U (z) must
be monotone.

Note also that, by di¬erentiation,

U 00(z) = ¬ e¡ ® ½ U 0(z ¡ ½ ) ¡ 2­ U(z)U 0(z): (2.15)

From (2.15), when z = z5, we see that U 0(z5 ¡ ½ ) > 0. This tells us z5 ¡ ½ 6 z3. Also,
U 00(z4) = 0 and U 0(z4) < 0, so, from (2.15), U 0(z4 ¡ ½ ) < 0. But z4 ¡ ½ < z5 ¡ ½ 6 z3,
so we should have U 0(z4 ¡ ½ ) > 0, giving a contradiction. This completes the proof
of the theorem. ¥

3. Global convergence

In this section we shall formulate a reaction{di¬usion extension of system (1.3) for
the case of a ­ nite spatial domain with homogeneous Neumann boundary conditions.
Such boundary conditions model a closed environment with re®ecting boundaries,
i.e. individuals cannot leave the domain. It should be obvious that the delayed term
¬ e¡ ® ½ um (t ¡ ½ ) in system (1.3) cannot now be replaced by expression (1.5) because
the arguments that led to that expression assumed the domain to be in­ nite. Where
the argument breaks down is the assertion that the number born at y that are still
alive and now at x will be given by multiplying the number born at y and still alive
by

g(x; y; ½ ) =
1p

4 º di ½
e¡(x¡y)2=4di ½ : (3.1)

As we explained earlier, expression (3.1) is the solution at time t = ½ of @g=@t =
di@

2g=@x2, ¡ 1 < x < 1, with g(x; y; 0) = ¯ (x ¡ y). For the case of a ­ nite domain,
which can be taken without loss of generality to be 0 6 x 6 º , the modi­ cation that
needs to be made is to replace (3.1) by G(x; y; ½ ), where G(x; y; t) is the solution of

@G

@t
= di

@2G

@x2
; 0 < x < º ; (3.2)

subject to

@G

@x
= 0 at x = 0; º and G(x; y; 0) = ¯ (x ¡ y): (3.3)

Solving (3.2), (3.3) gives

G(x; y; t) =
1

º
+

2

º

1X

n= 1

e¡din
2t cos nx cos ny: (3.4)
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Note that the function G(x; y; t) > 0 for all x, y if t > 0. The reader should further
note that G, de­ ned by (3.4), also satis­ es (3.2), (3.3), with x and y interchanged.

Thus, for the case of a ­ nite domain 0 6 x 6 º , the second equation of (1.6) will
be replaced by

@um

@t
= dm

@2um

@x2
+ ¬ e¡ ® ½ ·um (x; t) ¡ ­ u2

m ; t > 0; 0 < x < º ; (3.5)

where

·um (x; t) =

Z º

0

G(x; y; ½ )um (y; t ¡ ½ ) dy; (3.6)

with G given by (3.4), and with boundary conditions

@um

@x
(0; t) =

@um

@x
( º ; t) = 0; t > 0; (3.7)

and initial condition

um (x; t) = ¿ (x; t) for (x; t) 2 [0; º ] £ [ ¡ ½ ; 0]: (3.8)

Note that if um (x; s) > 0 for all x 2 [0; º ] and s 6 t, then ·um (x; t) > 0. This follows
from the positivity of G. Note also that G satis­ es

Z º

0

G(x; y; t) dy = 1

for any t > 0 and, in particular, t = ½ . Thus ·um is a weighted average of um at an
earlier time.

We prove that all ecologically relevant solutions um (x; t) approach ( ¬ =­ ) exp( ¡ ® ½ )
as t ! 1, uniformly for x 2 [0; º ]. This holds without any restriction on the param-
eters other than that they be positive. The key to proving our theorem is that
a comparison theorem holds for the scalar equation (3.5). This can be seen from
the theory developed by Redlinger (1984) for parabolic equations and systems con-
taining functional terms, and also from the abstract approach developed in Mar-
tin & Smith (1990) (see, in particular, proposition 3, remark 2.4 and corollary 5
of that paper). In the Redlinger (1984) approach, a pair of sub/supersolutions for
the problem (3.5){(3.8) is a pair of functions v and w, which are continuous on
[0; º ] £ [ ¡ ½ ; 1), possess all partial derivatives referred to in (ii) below (the existence
of vt and wt as one-sided derivatives from below being su¯ cient) and

(i) v 6 w for (x; t) 2 [0; º ] £ [ ¡ ½ ; 1);

(ii) vt 6 dm vxx + ¬ e¡ ® ½ ·Á ¡ ­ v2 and wt > dm wxx + ¬ e¡ ® ½ ·Á ¡ ­ w2 in (0; º )£(0; 1),
for all continuous functions Á such that v 6 Á 6 w in [0; º ] £ [ ¡ ½ ; 1);

(iii) vx(0; t) > 0, vx( º ; t) 6 0, wx(0; t) 6 0 and wx( º ; t) > 0;

(iv) v(x; s) 6 ¿ (x; s) 6 w(x; s) for (x; s) 2 [0; º ] £ [ ¡ ½ ; 0].

The following lemma then follows from theorem 3.4 in Redlinger (1984).

Lemma 3.1. Let v and w be a pair of sub/supersolutions for (3.5){(3.8) and sup-
pose that the initial function ¿ is H�older continuous in [0; º ]£[ ¡ ½ ; 0]. Then (3.5){(3.8)
has exactly one regular solution um (x; t) satisfying v 6 um 6 w in [0; º ] £ [ ¡ ½ ; 1).
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It is, of course, enough to verify the two inequalities in (ii) above for Á = v and
Á = w, respectively. This is because, in (3.5), the reaction term is increasing with
respect to the delayed variable ·um (x; t). The same observation would, of course, apply
to any other reaction term having this property.

We may now state the following result.

Theorem 3.2. Let the initial function ¿ be H�older continuous in [0; º ]£[ ¡ ½ ; 0] and
satisfy ¿ > 0 with ¿ 6² 0. Assume that ¬ ; ­ > 0 and ® ; ½ > 0. Then problem (3.5){
(3.8) has a unique positive solution um (x; t) satisfying

um (x; t) ! ¬

­
e¡ ® ½ as t ! 1; (3.9)

uniformly for x 2 [0; º ].

Proof . By the foregoing remarks, any solution of the second equation of (1.3)
can be a sub/supersolution of (3.5){(3.8). First note that if ½ = 0, then ·um (x; t) =
um (x; t) (since G(x; y; 0) = ¯ (x ¡ y)) and the problem reduces to Fisher’s equation
for which the conclusion of the theorem is already well known. Therefore, we assume
that ½ > 0.

It is readily seen that (0; K) are a sub/supersolution pair, where

K = max

µ
¬

­
e¡ ® ½ ; maxf¿ (x; s); x 2 [0; º ]; s 2 [ ¡ ½ ; 0]g

¶
:

Hence 0 6 um (x; t) 6 K. We now aim to show that um (x; t) > 0 for t su¯ ciently
large (in particular, for all t > ½ ). Recall that ¿ satis­ es ¿ > 0 with ¿ 6² 0. There are
two cases to consider. The ­ rst is when ¿ (x; 0) 6² 0 and we claim that in this case
um (x; t) > 0 on [0; º ] £ (0; 1). Suppose, on the contrary, that there exist (x ¤ ; t ¤ ) in
[0; º ] £ (0; 1) with um (x ¤ ; t¤ ) = 0. Then, since 0 6 um 6 K, it is readily seen that,
for 0 < t 6 t ¤ , um can be interpreted as satisfying a linear parabolic inequality

@um

@t
> dm

@2um

@x2
+ h(x; t)um ;

with h being a bounded function. Under these circumstances, the strong-maximum
principle and boundary-point lemma as described in Britton (1986) immediately
yield that ¿ (x; 0) ² 0, which is a contradiction. The second case to consider is when
¿ (x; 0) ² 0. We claim that the solution of (3.5){(3.8) cannot be identically zero
on [0; º ] £ (0; ½ ]. Indeed, if this were false, then, since the governing equation on
0 < t 6 ½ is

@um

@t
= dm

@2um

@x2
+ ¬ e¡ ® ½

Z º

0

G(x; y; ½ ) ¿ (y; t ¡ ½ ) dy ¡ ­ u2
m ; 0 < x < º ;

we would conclude that
Z º

0

G(x; y; ½ ) ¿ (y; t ¡ ½ ) dy = 0; for all (x; t) 2 [0; º ] £ (0; ½ ];

which contradicts ¿ 6² 0 (recall that G(x; y; ½ ) is strictly positive). So there exists
t ¤ ¤ 2 (0; ½ ] with um (¢; t ¤ ¤ ) 6² 0. Using similar arguments to the previous case, we can
show that um (x; t) > 0 for all (x; t) 2 [0; º ] £ (t¤ ¤ ; 1).
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Choose any T such that T > ½ . Then minfum (x; t); x 2 [0; º ]; t 2 [T; T + ½ ]g > 0.
The initial time (i.e. the time t = 0 in the foregoing remarks) shall henceforth be
taken as T + ½ , with conditions (i){(iv) above amended appropriately. Let v(t) and
w(t) be the continuous functions de­ ned by

v(t) := minfum (x; s); x 2 [0; º ]; s 2 [T; T + ½ ]g; T 6 t 6 T + ½ ;

_v(t) = ¬ e¡ ® ½ v(t ¡ ½ ) ¡ ­ v2(t); t > T + ½ ;

)
(3.10)

and

w(t) := maxfum (x; s); x 2 [0; º ]; s 2 [T; T + ½ ]g; T 6 t 6 T + ½ ;

_w(t) = ¬ e¡ ® ½ w(t ¡ ½ ) ¡ ­ w2(t); t > T + ½ :

)
(3.11)

Then v and w are a sub/supersolution pair and thus v(t) 6 um (x; t) 6 w(t)
in [0; º ] £ [T; 1). But all solutions of the second equation of (1.3) approach
( ¬ =­ ) exp( ¡ ® ½ ) as t ! 1 (see Aiello & Freedman 1990). Hence (3.9) holds. The
proof of the theorem is complete. ¥

Finally, we shall discuss the convergence of the immature population ui. For the
­ nite domain x 2 [0; º ], the ­ rst equation of (1.6) will become

@ui

@t
= di

@2ui

@x2
+ ¬ um ¡ ® ui ¡ ¬ e¡ ® ½ ·um (x; t); (3.12)

with

·um (x; t) =

Z º

0

G(x; y; ½ )um (y; t ¡ ½ ) dy

and G again de­ ned by (3.4). Since um (t) can now be regarded as a known func-
tion, the comparison theorem for equations without delay (see, for example, Smith
1995, theorem 3.4) can be applied to (3.12) under homogeneous Neumann boundary
conditions.

Let " > 0 be arbitrary. By the uniform convergence of um (x; t) proved in theo-
rem 3.2, it is true that, for all t su¯ ciently large,

um (x; t); ·um (x; t) 2
·

¬

­
e¡ ® ½ ¡ ";

¬

­
e¡ ® ½ + "

¸
:

Without going into the technicalities concerning initial conditions, it follows that, if
the initial time is suitably large, a solution u +

i (t) of

du +
i

dt
=

¬ 2

­
e¡ ® ½ (1 ¡ e¡ ® ½ ) + "¬ (1 + e¡ ® ½ ) ¡ ® u +

i ;

with appropriate `initial condition’, is a supersolution for (3.12). Also, a suitable
solution u¡

i (t) of

du¡
i

dt
=

¬ 2

­
e¡ ® ½ (1 ¡ e¡ ® ½ ) ¡ "¬ (1 + e¡ ® ½ ) ¡ ® u¡

i
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is a subsolution. Hence, for su¯ ciently large t,

u¡
i (t) 6 ui(x; t) 6 u+

i (t):

Hence

lim inf
t ! 1

minfui(x; t); x 2 [0; º ]g > lim
t ! 1

u¡
i (t)

=
1

®

µ
¬ 2

­
e¡ ® ½ (1 ¡ e¡ ® ½ ) ¡ "¬ (1 + e¡ ® ½ )

¶
:

Similarly,

lim sup
t ! 1

maxfui(x; t); x 2 [0; º ]g 6 lim
t ! 1

u +
i (t)

=
1

®

µ
¬ 2

­
e¡ ® ½ (1 ¡ e¡ ® ½ ) + "¬ (1 + e¡ ® ½ )

¶
:

Since these hold for all su¯ ciently small " > 0, we conclude that

ui(x; t) ! ¬ 2

­ ®
e¡ ® ½ (1 ¡ e¡ ® ½ ) as t ! 1;

uniformly for x 2 [0; º ].

4. Discussion

There are quite a few mathematical treatments of the di¬usive delay logistic equation
and Nicholson’s blow®ies equation (Gourley 2000a; b; So et al . 2001). The di¬usive
process of the population seems to enrich the dynamics for these two delay models.
These models assume a constant death rate and, as a result, wavefronts can be shown
to exist and their properties can be obtained. Through the use of a sub/supersolution
pair method, we have shown that the di¬usive delay version of model (1.3) continues
to produce simple global dynamics. We have also established the monotone property
of any possible wavefront solution of (2.12). However, the existence of wavefront
solutions for this model remains an open question.

Without di¬usion, the delay di¬erential model in question is a direct extension
of the well-known logistic di¬erential equation with delayed constant birth pro-
cesses and instantaneous quadratically regulated death processes. In general, a single-
species population growth with two-stage structure can be modelled as follows,

y0(t) = e¡d½ B(y(t ¡ ½ )) ¡ D(y(t)); (4.1)

where B(y) is the birth rate, d is the juvenile through-stage death rate, D(y) is the
death term and ½ is the time taken from birth to maturity. We say that the growth
process is regulated by strong death process if limy ! + 1 D(y)=y = +1. In particular,
if limy ! + 1 D(y)=y2 = c for some positive constant c, then we say it is a quadrati-
cally regulated death process. Model (1.3) assumes constant birth rate (B(y) = ¬ y)
and quadratic death process. It is known (Kuang 1993, theorem 4.9.1) that if both
functions B(y) and D(y) are strictly increasing and the model (4.1) admits a unique
positive steady state, then this delay-dependent steady state is a global attractor,
regardless of the delay length. We believe that when di¬usion is properly introduced
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and the reaction term adjusted accordingly, a di¬usive version of model (4.1) may
continue to produce such simple global dynamics. If growth is regulated by strong
instantaneous death process, then the existence of wavefronts, though intuitively very
likely, may be non-trivial to establish. In contrast, if growth is regulated by the birth
process (limy ! + 1 B(y)=y = 0) and the death rate is constant, as in the Nicholson’s
blow®ies model, then the dynamics is more colourful and qualitatively dependent on
the time delay (positive steady state, if it exists, may be stable for both small and
large delay, and unstable for intermediate delay (see Beretta & Kuang 2002; Cooke
et al . 1999)), and the wavefront solution can be established by the method of So et
al . (2001).

The above comments have the following important biological implications.

(i) Strongly regulated death process dramatically simpli­ es the growth dynamics.

(ii) Birth-regulated growth processes can generate rich dynamics due to the mat-
uration delay.

(iii) When modelling a single-species population growth, the birth and death pro-
cesses are two key factors, their importance exceeding that of di¬usive move-
ment and the e¬ect of maturation time delay.

We are grateful to the referees for their suggestions, which helped to improve this paper. The
work of Y.K. is partly supported by NSF grant DMS-0077790.
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